Sharp Carleman estimates and unique continuation
Journées équations aux dérivées partielles (2003)
- page 1-12
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topDos Santos Ferreira, David. "Sharp $L^p$ Carleman estimates and unique continuation." Journées équations aux dérivées partielles (2003): 1-12. <http://eudml.org/doc/93448>.
@article{DosSantosFerreira2003,
abstract = {We will present a unique continuation result for solutions of second order differential equations of real principal type $P(x,D)u+V(x)u=0$ with critical potential $V$ in $L^\{n/2\}$ (where $n$ is the number of variables) across non-characteristic pseudo-convex hypersurfaces. To obtain unique continuation we prove $L^p$ Carleman estimates, this is achieved by constructing a parametrix for the operator conjugated by the Carleman exponential weight and investigating its $L^p-L^\{p^\{\prime \}\}$ boundedness properties.},
author = {Dos Santos Ferreira, David},
journal = {Journées équations aux dérivées partielles},
keywords = {parametrix; - boundedness},
language = {eng},
pages = {1-12},
publisher = {Université de Nantes},
title = {Sharp $L^p$ Carleman estimates and unique continuation},
url = {http://eudml.org/doc/93448},
year = {2003},
}
TY - JOUR
AU - Dos Santos Ferreira, David
TI - Sharp $L^p$ Carleman estimates and unique continuation
JO - Journées équations aux dérivées partielles
PY - 2003
PB - Université de Nantes
SP - 1
EP - 12
AB - We will present a unique continuation result for solutions of second order differential equations of real principal type $P(x,D)u+V(x)u=0$ with critical potential $V$ in $L^{n/2}$ (where $n$ is the number of variables) across non-characteristic pseudo-convex hypersurfaces. To obtain unique continuation we prove $L^p$ Carleman estimates, this is achieved by constructing a parametrix for the operator conjugated by the Carleman exponential weight and investigating its $L^p-L^{p^{\prime }}$ boundedness properties.
LA - eng
KW - parametrix; - boundedness
UR - http://eudml.org/doc/93448
ER -
References
top- [1] Brenner P., On estimates for the wave equation, Math. Z., 145, 251-254, 1975. Zbl0321.35052MR387819
- [2] Brenner P., estimates for Fourier integral operators related to hyperbolic equations, Math. Z., 152, 273-286, 1977. Zbl0325.35009MR430872
- [3] Dos Santos Ferreira D., Inégalités de Carleman pour des indices critiques et applications, PhD thesis, University of Rennes, 2002.
- [4] Dos Santos Ferreira D., Strichartz estimates for non-selfadjoint operators and applications, to appear in Comm. PDE.
- [5] Dos Santos Ferreira D., Sharp Carleman estimates and unique continuation, preprint.
- [6] Escariauza L., Vega L., Carleman inequalities and the Heat operator II, Indiana Univ. Math. J., 50, 3, 2001, 1149-1169. Zbl1029.35046MR1871351
- [7] Hörmander L., The analysis of linear partial differential operators IV, Springer-Verlag, 1985. Zbl0612.35001MR781537
- [8] Kapitanski L., Some generalisations of the Strichartz-Brenner inequality, Leningrad Math. J., 1, 3, 693-726, 1990. Zbl0732.35118MR1015129
- [10] Jerison D., Kenig C.E., Unique continuation and absence of positive eigenvalues for Schrödinger operators, Adv. Math., 62, 1986, 118-134. MR865834
- [11] Keel M., Tao T., Endpoint Strichartz estimates, Amer. J. of Math, 120, 955-980, 1998. Zbl0922.35028MR1646048
- [12] Koch H., Tataru D., Carleman estimates and unique continuation for second order elliptic equations with non-smooth coefficients, Comm. Pure Appl. Math., 54, 3, 339-360, 2001. Zbl1033.35025MR1809741
- [13] Koch H., Tataru D., Dispersive estimates for principally normal operators and applications to unique continuation, preprint, 2003. Zbl1055.35152MR2056851
- [14] Kenig C.E., Ruiz A., Sogge C.D., Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J., 55, 2, 1987, 329-347. Zbl0644.35012MR894584
- [15] Smith H., A parametrix construction for wave equations with coefficients, J. Ann. Inst. Fourier, 48, 797-835, 1998. Zbl0974.35068MR1644105
- [16] Sogge C.D., Fourier integrals in classical analysis, Cambridge University Press, 1993. Zbl0783.35001MR1205579
- [17] Sogge C.D., Oscillatory integrals, Carleman inequalities and unique continuation for second order elliptic differential equations, J. Amer. Soc., 2, 1989, 491-516. Zbl0703.35027MR999662
- [18] Sogge C.D., Uniqueness in Cauchy problems for hyperbolic differential operators, Trans. of AMS, 333, 2, 1992, 821-833. Zbl0763.35012MR1066449
- [19] Strichartz R.S., Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44, 1977, 705-774. Zbl0372.35001
- [20] Tataru D., The spaces and unique continuation for solutions to the semilinear wave equation, Comm. PDE, 21, 1996, 841-887. Zbl0853.35017MR1391526
- [21] Treves F., Introduction to pseudo-differential and Fourier integral operators, Plenum Press, 1980. Zbl0453.47027MR597145
- [22] Wolff T., Unique continuation for | Δ u| ≤ V | ∇ u| and related problems, Rev. Mat. Iberoamericana 6, 3-4, 1990, 155-200. Zbl0735.35024MR1125760
- [23] Zuily C., Uniqueness and non-uniqueness in the Cauchy problem, Progress in Math., Birkhaüser, 1983. Zbl0521.35003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.