The mean-field limit for the dynamics of large particle systems

François Golse

Journées équations aux dérivées partielles (2003)

  • page 1-47
  • ISSN: 0752-0360

Abstract

top
This short course explains how the usual mean-field evolution PDEs in Statistical Physics - such as the Vlasov-Poisson, Schrödinger-Poisson or time-dependent Hartree-Fock equations - are rigorously derived from first principles, i.e. from the fundamental microscopic models that govern the evolution of large, interacting particle systems.

How to cite

top

Golse, François. "The mean-field limit for the dynamics of large particle systems." Journées équations aux dérivées partielles (2003): 1-47. <http://eudml.org/doc/93451>.

@article{Golse2003,
abstract = {This short course explains how the usual mean-field evolution PDEs in Statistical Physics - such as the Vlasov-Poisson, Schrödinger-Poisson or time-dependent Hartree-Fock equations - are rigorously derived from first principles, i.e. from the fundamental microscopic models that govern the evolution of large, interacting particle systems.},
author = {Golse, François},
journal = {Journées équations aux dérivées partielles},
language = {eng},
pages = {1-47},
publisher = {Université de Nantes},
title = {The mean-field limit for the dynamics of large particle systems},
url = {http://eudml.org/doc/93451},
year = {2003},
}

TY - JOUR
AU - Golse, François
TI - The mean-field limit for the dynamics of large particle systems
JO - Journées équations aux dérivées partielles
PY - 2003
PB - Université de Nantes
SP - 1
EP - 47
AB - This short course explains how the usual mean-field evolution PDEs in Statistical Physics - such as the Vlasov-Poisson, Schrödinger-Poisson or time-dependent Hartree-Fock equations - are rigorously derived from first principles, i.e. from the fundamental microscopic models that govern the evolution of large, interacting particle systems.
LA - eng
UR - http://eudml.org/doc/93451
ER -

References

top
  1. [25] R. Adami, C. Bardos, F. Golse, A. Teta, Towards a rigorous derivation of the cubic nonlinear Schrödinger equation in dimension 1, preprint. Zbl1069.35082
  2. [26] C. Bardos, L. Erdös, F. Golse, N. Mauser,H.-T. Yau, Derivation of the Schrödinger-Poisson equation from the quantum N-body problem, C. R. Acad. Sci. Sér. I Math 334 (2002), 515-520. Zbl1018.81009MR1890644
  3. [27] C. Bardos, F. Golse, A. Gottlieb, N. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation, to appear in J. de Math. Pures et Appl. 82 (2003). Zbl1029.82022MR1996777
  4. [28] C. Bardos, F. Golse, A. Gottlieb, N. Mauser, Derivation of the Time-Dependent Hartree-Fock Equation with Coulomb Potential, in preparation. Zbl1029.82022
  5. [30] C. Bardos, F. Golse, N. Mauser, Weak coupling limit of the N-particle Schrödinger equation, Methods Appl. Anal. 7 (2000), no. 2, 275-293. Zbl1003.81027MR1869286
  6. [31] A. Bove, G. DaPrato, G. Fano, An existence proof for the Hartree-Fock time-dependent problem with bounded two-body interaction, Commun. Math. Phys. 37 (1974), 183-191. Zbl0303.34046MR424069
  7. [32] A. Bove, G. DaPrato, G. Fano, On the Hartree-Fock time-dependent problem, Comm. Math. Phys. 49 (1976), 25-33. MR456066
  8. [33] W. Braun, K. Hepp, The Vlasov Dynamics and Its Fluctuations in the 1/N Limit of Interacting Classical Particles; Commun. Math. Phys. 56 (1977), 101-113. Zbl1155.81383MR475547
  9. [34] E. Caglioti, P.-L. Lions, C. Marchioro, M. Pulvirenti: A special class of flows for two-dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys. 143 (1992), 501-525. Zbl0745.76001MR1145596
  10. [35] E. Cancès, C. Le Bris, On the time-dependent Hartree-Fock equations coupled with a classical nuclear dynamics, Math. Models Methods Appl. Sci. 9 (1999), 963-990. Zbl1011.81087MR1710271
  11. [36] I. Catto, C. Le Bris, P.-L. Lions, The mathematical theory of thermodynamic limits: Thomas-Fermi type models, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, (1998). Zbl0938.81001MR1673212
  12. [37] J.M. Chadam, R.T. Glassey, Global existence of solutions to the Cauchy problem for time-dependent Hartree equations, J. Mathematical Phys. 16 (1975), 1122-1130. Zbl0299.35084MR413843
  13. [38] L. Desvillettes, C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation; preprint. Zbl1162.82316MR1787105
  14. [39] R. Dobrushin, Vlasov equations; Funct. Anal. Appl. 13 (1979), 115-123. Zbl0422.35068MR541637
  15. [40] L. Erdös, H.-T. Yau: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys. 5 (2001), 1169-1205. Zbl1014.81063MR1926667
  16. [41] G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas, Nota int. no. 358, Istituto di Fisica, Università di Roma, (1972). Reprinted in Statistical Mechanics: a Short Treatise, pp. 48-55, Springer-Verlag Berlin-Heidelberg (1999) 
  17. [42] M. Kiessling, Statistical mechanics of classical particles with logarithmic interactions; Commun. Pure Appl. Math. 46 (1993), 27-56. Zbl0811.76002MR1193342
  18. [43] F. King, PhD Thesis, U. of California, Berkeley 1975. 
  19. [44] L. Landau, E. Lifshitz: Mécanique quantique; Editions Mir, Moscou 1967. 
  20. [45] L. Landau, E. Lifshitz: Théorie quantique relativiste, première partie; Editions Mir, Moscou 1972. MR389019
  21. [46] L. Landau, E. Lifshitz: Physique statistique, deuxième partie; Editions Mir, Moscou 1990. 
  22. [47] O. Lanford: Time evolution of large classical systems, in ``Dynamical systems, theory and applications" (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), pp. 1-111. Lecture Notes in Phys., Vol. 38, Springer, Berlin, 1975. Zbl0329.70011MR479206
  23. [48] C. Marchioro, M. PulvirentiMathematical Theory of Incompressible Nonviscous Fluids, Springer-Verlag (1994). Zbl0789.76002MR1245492
  24. [50] V. Maslov: Equations of the self-consistent field; J. Soviet Math. 11 (1979), 123-195. Zbl0408.45010MR489604
  25. [51] H. Narnhofer, G.L. Sewell, Vlasov hydrodynamics of a quantum mechanical model, Comm. Math. Phys. 79 (1981), 9-24. MR609224
  26. [52] H. NeunzertThe Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles; Trans. Fluid Dynamics 18 (1977), 663-678. 
  27. [52] L. NirenbergAn abstract form of the nonlinear Cauchy-Kowalewski theorem; J. Differential Geometry 6 (1972), 561-576. Zbl0257.35001MR322321
  28. [53] L. OnsagerStatistical hydrodynamics, Supplemento al Nuovo Cimento 6 (1949), 279-287. MR36116
  29. [54] T. NishidaA note on a theorem of Nirenberg; J. Differential Geometry 12 (1977), 629-633. Zbl0368.35007MR512931
  30. [55] H. Spohn, Kinetic Equations from Hamiltonian Dynamics: Markovian Limits, Rev. Modern Phys. 52 (1980), 569-615. MR578142

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.