Mean field equations for the quantum dynamics of many particles
Séminaire Bourbaki (2003-2004)
- Volume: 46, page 147-164
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topGérard, Patrick. "Équations de champ moyen pour la dynamique quantique d’un grand nombre de particules." Séminaire Bourbaki 46 (2003-2004): 147-164. <http://eudml.org/doc/252123>.
@article{Gérard2003-2004,
abstract = {L’objet de cet exposé est de montrer comment l’évolution de Schrödinger pour le problème à $N$ corps quantique est approchée, lorsque $N$ tend vers l’infini, dans un régime convenable, par une évolution non-linéaire en dimension trois d’espace. On traitera le cas des bosons, qui conduit à l’équation de Schrödinger-Poisson, et celui des fermions, qui débouche sur le système de Hartree-Fock.},
author = {Gérard, Patrick},
journal = {Séminaire Bourbaki},
keywords = {quantum $N$-body problem; mean field equations; Hartree equation; Schrödinger–Poisson equation; Hartree-Fock system; Slater determinants; BBGKY hierarchy},
language = {fre},
pages = {147-164},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Équations de champ moyen pour la dynamique quantique d’un grand nombre de particules},
url = {http://eudml.org/doc/252123},
volume = {46},
year = {2003-2004},
}
TY - JOUR
AU - Gérard, Patrick
TI - Équations de champ moyen pour la dynamique quantique d’un grand nombre de particules
JO - Séminaire Bourbaki
PY - 2003-2004
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 46
SP - 147
EP - 164
AB - L’objet de cet exposé est de montrer comment l’évolution de Schrödinger pour le problème à $N$ corps quantique est approchée, lorsque $N$ tend vers l’infini, dans un régime convenable, par une évolution non-linéaire en dimension trois d’espace. On traitera le cas des bosons, qui conduit à l’équation de Schrödinger-Poisson, et celui des fermions, qui débouche sur le système de Hartree-Fock.
LA - fre
KW - quantum $N$-body problem; mean field equations; Hartree equation; Schrödinger–Poisson equation; Hartree-Fock system; Slater determinants; BBGKY hierarchy
UR - http://eudml.org/doc/252123
ER -
References
top- [1] M.S. Baouendi & C. Goulaouic – “Remarks on the abstract form of nonlinear Cauchy-Kovalevsky theorems”, Comm. Partial Differential Equations2 (1977), p. 1151–1162. Zbl0391.35006MR481322
- [2] C. Bardos, L. Erdös, F. Golse, N. Mauser & H.T. Yau – “Derivation of the Schrödinger-Poisson equation from the quantum -body problem”, C. R. Acad. Sci. Paris Sér. I Math.334 (2002), p. 515–520. Zbl1018.81009MR1890644
- [3] C. Bardos, F. Golse, A. Gottlieb & N. Mauser – “Mean field dynamics of fermions and the time-dependent Hartree-Fock equation”, J. Math. Pures Appl.82 (2003), p. 665–683. Zbl1029.82022MR1996777
- [4] —, “Accuracy of the time-dependent Hartree-Fock approximation for uncorrelated initial states”, J. Statist. Phys. 115 (2004), à paraître. Zbl1073.81076MR2054172
- [5] —, “Derivation of the time-dependent Hartree-Fock equation with Coulomb potential”, manuscrit, 2004.
- [6] C. Bardos, F. Golse & N. Mauser – “Weak coupling limit of the -particle Schrödinger equation”, Methods Appl. Anal.7 (2000), p. 275–293. Zbl1003.81027MR1869286
- [7] A. Bove, G. Da Prato & G. Fano – “On the Hartree-Fock time-dependent problem”, Comm. Math. Phys.49 (1976), p. 25–33. Zbl0303.34046MR456066
- [8] I. Catto, C. Le Bris & P.-L. Lions – Mathematical theory of thermodynamic limits : Thomas-Fermi type models, Oxford Mathematical Monographs, Clarendon Press, 1998. Zbl0938.81001MR1673212
- [9] T. Cazenave – Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, American Mathematical Society, 2003. Zbl1055.35003MR2002047
- [10] G. Chadam & R. Glassey – “Global existence of solutions to the Cauchy problem for time-dependent Hartree-Fock equations”, J. Math. Phys.16 (1975), p. 1122–1130. Zbl0299.35084MR413843
- [11] P.A.M. Dirac – “Note on exchange phenomena in the Thomas atom”, Math. Proc. Cambridge Philos. Soc.26 (1930), p. 376–385. Zbl56.0751.04JFM56.0751.04
- [12] L. Erdös & H.T. Yau – “Derivation of the nonlinear Schrödinger equation from a many body Coulomb system”, Adv. Theor. Math. Phys.5 (2001), p. 1169–1205. Zbl1014.81063MR1926667
- [13] V. Fock – “Näherungsmethode zur Lösing des quantenmechanischen Mehrkörperproblems”, Z. Phys.61 (1930), p. 126–148. Zbl56.1313.08JFM56.1313.08
- [14] J. Ginibre & G. Velo – “The classical field limit of scattering theory for non-relativistic many-bosons systems, I-II”, Comm. Math. Phys. 66 (1979), p. 37–76, 68 (1979), p. 45-68. Zbl0443.35068MR530915
- [15] —, “On a class of nonlinear Schrödinger equations with nonlocal interactions”, Math. Z.170 (1980), p. 109–145. MR562582
- [16] F. Golse – “The mean-field limit for the dynamics of large particle systems”, in Actes des Journées “Équations aux dérivées partielles”(Forges-les-Eaux, 2-6 juin 2003), GDR 2434 du CNRS, Version électronique disponible sur le site : http://www. math.sciences.univ-nantes.fr/edpa. Zbl1211.82037MR2050595
- [17] D. Hartree – “The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods”, Math. Proc. Cambridge Philos. Soc.24 (1928), p. 89–132. JFM54.0966.05
- [18] K. Hepp – “The classical limit for quantum mechanical correlation functions”, Comm. Math. Phys.35 (1974), p. 265–277. MR332046
- [19] T. Kato – “Fundamental properties of Hamiltonian operators of Schrödinger type”, Trans. Amer. Math. Soc.70 (1951), p. 195–201. Zbl0044.42701MR41010
- [20] E.H. Lieb – “The stability of matter : from atoms to stars”, Bull. Amer. Math. Soc. (N.S.) 22 (1990), p. 1–49. Zbl0698.35135MR1014510
- [21] E.H. Lieb & W.E. Thirring – “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities”, in Studies in Mathematical Physics, Essays in Honor of Valentine Bargmann (E.H. Lieb, B. Simon & W.E. Thirring, éds.), Princeton University Press, 1976. Zbl0342.35044
- [22] L. Nirenberg – “On an abstract form of the nonlinear Cauchy-Kowalewski theorem”, J. Differential Geom.6 (1972), p. 561–576. Zbl0257.35001MR322321
- [23] T. Nishida – “A note on a theorem of Nirenberg”, J. Differential Geom.12 (1977), p. 629–633. Zbl0368.35007MR512931
- [24] L.V. Ovcyannikov – “A nonlinear Cauchy problem in a scale of Banach spaces”, Dokl. Akad. Nauk SSSR 200 (1971), no. 4, traduction anglaise dans Sov. Math. Dokl. 12 (1971), p. 1497-1502. Zbl0234.35018
- [25] M. Reed & B. Simon – Methods of Modern Mathematical Physics, vol. I-IV, Academic Press, 1978. Zbl0401.47001MR493422
- [26] J.C. Slater – “A note on Hartree’s method”, Phys. Rev.35 (1930), p. 210–211.
- [27] H. Spohn – “Kinetic equations from Hamiltonian dynamics : Markovian limits”, Rev. Modern Phys.53 (1980), p. 569–615. Zbl0399.60082MR578142
- [28] Y. Tsutsumi – “-solutions for nonlinear Schrödinger equations and nonlinear groups”, Funkcial. Ekvac.30 (1987), p. 115–125. Zbl0638.35021MR915266
- [29] H. Weyl – Gruppentheorie und Quantenmechanik, 1928, traduction et deuxième édition : The Theory of Groups and Quantum Mechanics, Dover, 1950. JFM54.0954.03
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.