Mean field equations for the quantum dynamics of many particles

Patrick Gérard

Séminaire Bourbaki (2003-2004)

  • Volume: 46, page 147-164
  • ISSN: 0303-1179

Abstract

top
The purpose of this talk is to describe how the Schrödinger evolution for the quantum N –body problem is approximated, as N tends to infinity, in a suitable regime, by a nonlinear evolution in three space dimensions. We shall discuss the case of bosons, which leads to the Schrödinger–Poisson equation, and the case of fermions, with its connections to the Hartree-Fock system.

How to cite

top

Gérard, Patrick. "Équations de champ moyen pour la dynamique quantique d’un grand nombre de particules." Séminaire Bourbaki 46 (2003-2004): 147-164. <http://eudml.org/doc/252123>.

@article{Gérard2003-2004,
abstract = {L’objet de cet exposé est de montrer comment l’évolution de Schrödinger pour le problème à $N$ corps quantique est approchée, lorsque $N$ tend vers l’infini, dans un régime convenable, par une évolution non-linéaire en dimension trois d’espace. On traitera le cas des bosons, qui conduit à l’équation de Schrödinger-Poisson, et celui des fermions, qui débouche sur le système de Hartree-Fock.},
author = {Gérard, Patrick},
journal = {Séminaire Bourbaki},
keywords = {quantum $N$-body problem; mean field equations; Hartree equation; Schrödinger–Poisson equation; Hartree-Fock system; Slater determinants; BBGKY hierarchy},
language = {fre},
pages = {147-164},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Équations de champ moyen pour la dynamique quantique d’un grand nombre de particules},
url = {http://eudml.org/doc/252123},
volume = {46},
year = {2003-2004},
}

TY - JOUR
AU - Gérard, Patrick
TI - Équations de champ moyen pour la dynamique quantique d’un grand nombre de particules
JO - Séminaire Bourbaki
PY - 2003-2004
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 46
SP - 147
EP - 164
AB - L’objet de cet exposé est de montrer comment l’évolution de Schrödinger pour le problème à $N$ corps quantique est approchée, lorsque $N$ tend vers l’infini, dans un régime convenable, par une évolution non-linéaire en dimension trois d’espace. On traitera le cas des bosons, qui conduit à l’équation de Schrödinger-Poisson, et celui des fermions, qui débouche sur le système de Hartree-Fock.
LA - fre
KW - quantum $N$-body problem; mean field equations; Hartree equation; Schrödinger–Poisson equation; Hartree-Fock system; Slater determinants; BBGKY hierarchy
UR - http://eudml.org/doc/252123
ER -

References

top
  1. [1] M.S. Baouendi & C. Goulaouic – “Remarks on the abstract form of nonlinear Cauchy-Kovalevsky theorems”, Comm. Partial Differential Equations2 (1977), p. 1151–1162. Zbl0391.35006MR481322
  2. [2] C. Bardos, L. Erdös, F. Golse, N. Mauser & H.T. Yau – “Derivation of the Schrödinger-Poisson equation from the quantum N -body problem”, C. R. Acad. Sci. Paris Sér. I Math.334 (2002), p. 515–520. Zbl1018.81009MR1890644
  3. [3] C. Bardos, F. Golse, A. Gottlieb & N. Mauser – “Mean field dynamics of fermions and the time-dependent Hartree-Fock equation”, J. Math. Pures Appl.82 (2003), p. 665–683. Zbl1029.82022MR1996777
  4. [4] —, “Accuracy of the time-dependent Hartree-Fock approximation for uncorrelated initial states”, J. Statist. Phys. 115 (2004), à paraître. Zbl1073.81076MR2054172
  5. [5] —, “Derivation of the time-dependent Hartree-Fock equation with Coulomb potential”, manuscrit, 2004. 
  6. [6] C. Bardos, F. Golse & N. Mauser – “Weak coupling limit of the N -particle Schrödinger equation”, Methods Appl. Anal.7 (2000), p. 275–293. Zbl1003.81027MR1869286
  7. [7] A. Bove, G. Da Prato & G. Fano – “On the Hartree-Fock time-dependent problem”, Comm. Math. Phys.49 (1976), p. 25–33. Zbl0303.34046MR456066
  8. [8] I. Catto, C. Le Bris & P.-L. Lions – Mathematical theory of thermodynamic limits : Thomas-Fermi type models, Oxford Mathematical Monographs, Clarendon Press, 1998. Zbl0938.81001MR1673212
  9. [9] T. Cazenave – Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, American Mathematical Society, 2003. Zbl1055.35003MR2002047
  10. [10] G. Chadam & R. Glassey – “Global existence of solutions to the Cauchy problem for time-dependent Hartree-Fock equations”, J. Math. Phys.16 (1975), p. 1122–1130. Zbl0299.35084MR413843
  11. [11] P.A.M. Dirac – “Note on exchange phenomena in the Thomas atom”, Math. Proc. Cambridge Philos. Soc.26 (1930), p. 376–385. Zbl56.0751.04JFM56.0751.04
  12. [12] L. Erdös & H.T. Yau – “Derivation of the nonlinear Schrödinger equation from a many body Coulomb system”, Adv. Theor. Math. Phys.5 (2001), p. 1169–1205. Zbl1014.81063MR1926667
  13. [13] V. Fock – “Näherungsmethode zur Lösing des quantenmechanischen Mehrkörperproblems”, Z. Phys.61 (1930), p. 126–148. Zbl56.1313.08JFM56.1313.08
  14. [14] J. Ginibre & G. Velo – “The classical field limit of scattering theory for non-relativistic many-bosons systems, I-II”, Comm. Math. Phys. 66 (1979), p. 37–76, 68 (1979), p. 45-68. Zbl0443.35068MR530915
  15. [15] —, “On a class of nonlinear Schrödinger equations with nonlocal interactions”, Math. Z.170 (1980), p. 109–145. MR562582
  16. [16] F. Golse – “The mean-field limit for the dynamics of large particle systems”, in Actes des Journées “Équations aux dérivées partielles”(Forges-les-Eaux, 2-6 juin 2003), GDR 2434 du CNRS, Version électronique disponible sur le site : http://www. math.sciences.univ-nantes.fr/edpa. Zbl1211.82037MR2050595
  17. [17] D. Hartree – “The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods”, Math. Proc. Cambridge Philos. Soc.24 (1928), p. 89–132. JFM54.0966.05
  18. [18] K. Hepp – “The classical limit for quantum mechanical correlation functions”, Comm. Math. Phys.35 (1974), p. 265–277. MR332046
  19. [19] T. Kato – “Fundamental properties of Hamiltonian operators of Schrödinger type”, Trans. Amer. Math. Soc.70 (1951), p. 195–201. Zbl0044.42701MR41010
  20. [20] E.H. Lieb – “The stability of matter : from atoms to stars”, Bull. Amer. Math. Soc. (N.S.) 22 (1990), p. 1–49. Zbl0698.35135MR1014510
  21. [21] E.H. Lieb & W.E. Thirring – “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities”, in Studies in Mathematical Physics, Essays in Honor of Valentine Bargmann (E.H. Lieb, B. Simon & W.E. Thirring, éds.), Princeton University Press, 1976. Zbl0342.35044
  22. [22] L. Nirenberg – “On an abstract form of the nonlinear Cauchy-Kowalewski theorem”, J. Differential Geom.6 (1972), p. 561–576. Zbl0257.35001MR322321
  23. [23] T. Nishida – “A note on a theorem of Nirenberg”, J. Differential Geom.12 (1977), p. 629–633. Zbl0368.35007MR512931
  24. [24] L.V. Ovcyannikov – “A nonlinear Cauchy problem in a scale of Banach spaces”, Dokl. Akad. Nauk SSSR 200 (1971), no. 4, traduction anglaise dans Sov. Math. Dokl. 12 (1971), p. 1497-1502. Zbl0234.35018
  25. [25] M. Reed & B. Simon – Methods of Modern Mathematical Physics, vol. I-IV, Academic Press, 1978. Zbl0401.47001MR493422
  26. [26] J.C. Slater – “A note on Hartree’s method”, Phys. Rev.35 (1930), p. 210–211. 
  27. [27] H. Spohn – “Kinetic equations from Hamiltonian dynamics : Markovian limits”, Rev. Modern Phys.53 (1980), p. 569–615. Zbl0399.60082MR578142
  28. [28] Y. Tsutsumi – “ L 2 -solutions for nonlinear Schrödinger equations and nonlinear groups”, Funkcial. Ekvac.30 (1987), p. 115–125. Zbl0638.35021MR915266
  29. [29] H. Weyl – Gruppentheorie und Quantenmechanik, 1928, traduction et deuxième édition : The Theory of Groups and Quantum Mechanics, Dover, 1950. JFM54.0954.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.