Transcendental numbers having explicit g -adic and Jacobi-Perron expansions

Jun-Ichi Tamura

Journal de théorie des nombres de Bordeaux (1992)

  • Volume: 4, Issue: 1, page 75-95
  • ISSN: 1246-7405

How to cite

top

Tamura, Jun-Ichi. "Transcendental numbers having explicit $g$-adic and Jacobi-Perron expansions." Journal de théorie des nombres de Bordeaux 4.1 (1992): 75-95. <http://eudml.org/doc/93558>.

@article{Tamura1992,
author = {Tamura, Jun-Ichi},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {irrationality; -adic expansions; fixed points; substitution; Jacobi- Perron expansion; associated Jacobi-Perron algorithm for formal Laurent series},
language = {eng},
number = {1},
pages = {75-95},
publisher = {Université Bordeaux I},
title = {Transcendental numbers having explicit $g$-adic and Jacobi-Perron expansions},
url = {http://eudml.org/doc/93558},
volume = {4},
year = {1992},
}

TY - JOUR
AU - Tamura, Jun-Ichi
TI - Transcendental numbers having explicit $g$-adic and Jacobi-Perron expansions
JO - Journal de théorie des nombres de Bordeaux
PY - 1992
PB - Université Bordeaux I
VL - 4
IS - 1
SP - 75
EP - 95
LA - eng
KW - irrationality; -adic expansions; fixed points; substitution; Jacobi- Perron expansion; associated Jacobi-Perron algorithm for formal Laurent series
UR - http://eudml.org/doc/93558
ER -

References

top
  1. [1] Adams, W.W. and Davison, J.L., A remarkable class of continued fractions, Proc. Amer. Math. Soc.65 (1977), 194-198. Zbl0366.10027MR441879
  2. [2] Allouche, J.-P., Automates finis en théorie des nombres, Expo. Math.5 (1987), 239-266. Zbl0641.10041MR898507
  3. [3] Berstein L., The Jacobi-Perron Algorithm, its Theory and Application, Lect. Notes in Math. 207, Springer-Verlag, (1971). Zbl0213.05201MR285478
  4. [4] Böhmer, P.E., Über die Transzendenz gewisser dyadischer Brüche, Math. Ann.96 (1927), 367-377. Zbl52.0188.02MR1512324JFM52.0188.02
  5. [5] Bundschuh, P.E., Über eine Klasse reeler transzendenter Zahlen mit explicit angebbarer g-adischer und Kettenbruch-Entwicklung, J. reine angew. Math318 (1980), 110-119. Zbl0425.10038MR579386
  6. [6] Carlitz, L., Hoggatt, V.E., and Scoville R., Some functions related to Fibonacci and Lucas representations,, The Theory of Arithmetic FunctionsLect. Notes in Math. 251Springer-Verlag, 1972, 71-102. Zbl0229.05012MR340167
  7. [7] Danilov, L.V., O nekotorykh klassakh transcendentnykh cisel, Mat. Zametki, Tom 12, No 2 (1972), 149-154 = Some classes of transcentental numbers, Math. Notes12 (1972), 524-527. Zbl0253.10026MR316391
  8. [8] Davison, J.L., A series and its associated continued fraction, Proc. Amer. Math. Soc.63 (1977), 29-32. Zbl0326.10030MR429778
  9. [9] Fatou, P., Séries trigonométriques et séries de Taylor, Acta Math.30 (1906), 335-400. Zbl37.0283.01JFM37.0283.01
  10. [10] Fraenkel, A.S., Systems of numeration, Amer. Math. Monthly92 (1985), 105-114. Zbl0568.10005MR777556
  11. [11] Hopcroft, E. and Ullman, J.D., Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 198. Zbl0426.68001
  12. [12] Knuth D.E., The Art of Computer Programming, Vol. III (Sorting and Searching), Addison Wesley, 1973, pp. 269-270, pp. 286-287, and pp. 647-648. Zbl0302.68010MR378456
  13. [13] Mahler, K., Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann.101 (1929), 342-366. Zbl55.0115.01MR1512537JFM55.0115.01
  14. [14] Nikišin, E.M. and Sorokin V.N., Racional'nye approksimacii i ortogonal'nost' (in Russian), Nauka, 1988, 168-175. 
  15. [15] Nishioka, K., Shiokawa, I. and Tamura, J., Arithmetical properties of certain power series, (1990), to appear in J. Number Theory. Zbl0770.11039
  16. [16] Parusnikov, V.I., Algoritm Jacobi-Perrona i sovmestnoe priblizenie funkcij (in Russian), Mat. Sbornik114 (156) no. 2 (1982), 322-333. Zbl0461.30003MR609293
  17. [17] Polya G. and Szegö G., Problems and Theorems in Analysis II, Springer-Verlag, 1976. Zbl0359.00003
  18. [18] Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France110 (1982), 147-178. Zbl0522.10032MR667748
  19. [19] Shallit, J.O., A generalization of automatic sequences, Theor. Comput. Sci.61 (1988), 1-16. Zbl0662.68052MR974766
  20. [20] Sloane, N.J.A., A Handbook of Integer Sequences, Academic Press, 1973. Zbl0286.10001
  21. [21] Stolarsky, K.B., Beatty sequences, continued fractions, and certain shift operators, Canad. Math. Bull.19 (1976), 473-482. Zbl0359.10028MR444558
  22. [22] Zeckendorf, E., Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège41 (1972), 179-182. Zbl0252.10011MR308032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.