Transcendental numbers having explicit -adic and Jacobi-Perron expansions
Journal de théorie des nombres de Bordeaux (1992)
- Volume: 4, Issue: 1, page 75-95
- ISSN: 1246-7405
Access Full Article
topHow to cite
topTamura, Jun-Ichi. "Transcendental numbers having explicit $g$-adic and Jacobi-Perron expansions." Journal de théorie des nombres de Bordeaux 4.1 (1992): 75-95. <http://eudml.org/doc/93558>.
@article{Tamura1992,
author = {Tamura, Jun-Ichi},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {irrationality; -adic expansions; fixed points; substitution; Jacobi- Perron expansion; associated Jacobi-Perron algorithm for formal Laurent series},
language = {eng},
number = {1},
pages = {75-95},
publisher = {Université Bordeaux I},
title = {Transcendental numbers having explicit $g$-adic and Jacobi-Perron expansions},
url = {http://eudml.org/doc/93558},
volume = {4},
year = {1992},
}
TY - JOUR
AU - Tamura, Jun-Ichi
TI - Transcendental numbers having explicit $g$-adic and Jacobi-Perron expansions
JO - Journal de théorie des nombres de Bordeaux
PY - 1992
PB - Université Bordeaux I
VL - 4
IS - 1
SP - 75
EP - 95
LA - eng
KW - irrationality; -adic expansions; fixed points; substitution; Jacobi- Perron expansion; associated Jacobi-Perron algorithm for formal Laurent series
UR - http://eudml.org/doc/93558
ER -
References
top- [1] Adams, W.W. and Davison, J.L., A remarkable class of continued fractions, Proc. Amer. Math. Soc.65 (1977), 194-198. Zbl0366.10027MR441879
- [2] Allouche, J.-P., Automates finis en théorie des nombres, Expo. Math.5 (1987), 239-266. Zbl0641.10041MR898507
- [3] Berstein L., The Jacobi-Perron Algorithm, its Theory and Application, Lect. Notes in Math. 207, Springer-Verlag, (1971). Zbl0213.05201MR285478
- [4] Böhmer, P.E., Über die Transzendenz gewisser dyadischer Brüche, Math. Ann.96 (1927), 367-377. Zbl52.0188.02MR1512324JFM52.0188.02
- [5] Bundschuh, P.E., Über eine Klasse reeler transzendenter Zahlen mit explicit angebbarer g-adischer und Kettenbruch-Entwicklung, J. reine angew. Math318 (1980), 110-119. Zbl0425.10038MR579386
- [6] Carlitz, L., Hoggatt, V.E., and Scoville R., Some functions related to Fibonacci and Lucas representations,, The Theory of Arithmetic FunctionsLect. Notes in Math. 251Springer-Verlag, 1972, 71-102. Zbl0229.05012MR340167
- [7] Danilov, L.V., O nekotorykh klassakh transcendentnykh cisel, Mat. Zametki, Tom 12, No 2 (1972), 149-154 = Some classes of transcentental numbers, Math. Notes12 (1972), 524-527. Zbl0253.10026MR316391
- [8] Davison, J.L., A series and its associated continued fraction, Proc. Amer. Math. Soc.63 (1977), 29-32. Zbl0326.10030MR429778
- [9] Fatou, P., Séries trigonométriques et séries de Taylor, Acta Math.30 (1906), 335-400. Zbl37.0283.01JFM37.0283.01
- [10] Fraenkel, A.S., Systems of numeration, Amer. Math. Monthly92 (1985), 105-114. Zbl0568.10005MR777556
- [11] Hopcroft, E. and Ullman, J.D., Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 198. Zbl0426.68001
- [12] Knuth D.E., The Art of Computer Programming, Vol. III (Sorting and Searching), Addison Wesley, 1973, pp. 269-270, pp. 286-287, and pp. 647-648. Zbl0302.68010MR378456
- [13] Mahler, K., Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann.101 (1929), 342-366. Zbl55.0115.01MR1512537JFM55.0115.01
- [14] Nikišin, E.M. and Sorokin V.N., Racional'nye approksimacii i ortogonal'nost' (in Russian), Nauka, 1988, 168-175.
- [15] Nishioka, K., Shiokawa, I. and Tamura, J., Arithmetical properties of certain power series, (1990), to appear in J. Number Theory. Zbl0770.11039
- [16] Parusnikov, V.I., Algoritm Jacobi-Perrona i sovmestnoe priblizenie funkcij (in Russian), Mat. Sbornik114 (156) no. 2 (1982), 322-333. Zbl0461.30003MR609293
- [17] Polya G. and Szegö G., Problems and Theorems in Analysis II, Springer-Verlag, 1976. Zbl0359.00003
- [18] Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France110 (1982), 147-178. Zbl0522.10032MR667748
- [19] Shallit, J.O., A generalization of automatic sequences, Theor. Comput. Sci.61 (1988), 1-16. Zbl0662.68052MR974766
- [20] Sloane, N.J.A., A Handbook of Integer Sequences, Academic Press, 1973. Zbl0286.10001
- [21] Stolarsky, K.B., Beatty sequences, continued fractions, and certain shift operators, Canad. Math. Bull.19 (1976), 473-482. Zbl0359.10028MR444558
- [22] Zeckendorf, E., Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège41 (1972), 179-182. Zbl0252.10011MR308032
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.