Non literal tranducers and some problems of normality
Journal de théorie des nombres de Bordeaux (1993)
- Volume: 5, Issue: 2, page 303-321
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBlanchard, François. "Non literal tranducers and some problems of normality." Journal de théorie des nombres de Bordeaux 5.2 (1993): 303-321. <http://eudml.org/doc/93584>.
@article{Blanchard1993,
abstract = {A new proof of Maxfield’s theorem is given, using automata and results from Symbolic Dynamics. These techniques permit to prove that points that are near normality to base $p^k$ (resp. $p$) are also near normality to base $p$ (resp. $p^k$), and to study genericity preservation for non Lebesgue measures when going from one base to the other. Finally, similar results are proved to bases the golden mean and its square.},
author = {Blanchard, François},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {transducers; normality; real numbers; base changes; automata; Maxfield's theorem},
language = {eng},
number = {2},
pages = {303-321},
publisher = {Université Bordeaux I},
title = {Non literal tranducers and some problems of normality},
url = {http://eudml.org/doc/93584},
volume = {5},
year = {1993},
}
TY - JOUR
AU - Blanchard, François
TI - Non literal tranducers and some problems of normality
JO - Journal de théorie des nombres de Bordeaux
PY - 1993
PB - Université Bordeaux I
VL - 5
IS - 2
SP - 303
EP - 321
AB - A new proof of Maxfield’s theorem is given, using automata and results from Symbolic Dynamics. These techniques permit to prove that points that are near normality to base $p^k$ (resp. $p$) are also near normality to base $p$ (resp. $p^k$), and to study genericity preservation for non Lebesgue measures when going from one base to the other. Finally, similar results are proved to bases the golden mean and its square.
LA - eng
KW - transducers; normality; real numbers; base changes; automata; Maxfield's theorem
UR - http://eudml.org/doc/93584
ER -
References
top- [A] L.M. Abramov, The entropy of a derived automorphism, Amer. Math. Soc. Transl.49 (1965), 162-166. Zbl0185.21804
- [BP] J. Berstel, D. Perrin, Theory of codes, London, Academic Press, 1985. Zbl0587.68066MR797069
- [Be] A. Bertrand-Mathis, Développements en base θ et répartition modulo 1 de la suite (xθn), Bull. Soc. math. Fr.114 (1986), 271-324. Zbl0628.58024
- [BIP] F. Blanchard, D. Perrin, Relèvements d'une mesure ergodique par un codage, Z. Wahrsheinlichkeist. v. Gebiete54 (1980), 303-311. Zbl0441.60004MR602513
- [BIDT] F. Blanchard, J.-M. Dumont, A. Thomas, Generic sequences, transducers and multiplication of normal numbers, Israel J. Math.80 (1992), 257-287. Zbl0776.11040MR1202572
- [BrL] A. Broglio, P. Liardet, Predictions with automata, Symbolic Dynamics and its Applications, AMS, providence, RI, P. Walters ed., Contemporary Math135, 1992. Zbl0777.11028MR1185084
- [C] J.W.S. Cassels, On a paper of Niven and Zuckerman, Pacific J. Math.3 (1953), 555-557. Zbl0047.04402MR51271
- [D] J.-M. Dumont, Private communication.
- [F1] C. Frougny, Representations of numbers and finite automata, Math. Systems Theory25 (1992), 37-60. Zbl0776.11005MR1139094
- [F2] C. Frougny, How to write integers in non-integer base, Lecture Notes in Computer Science (Proceedings of Latin '92) 583, 154-164. MR1253354
- [F3] C. Frougny, B. Solomyak, Finite Beta-expansions, Ergod. Th. & Dynam. Syst. 12 (1992), 713-723. Zbl0814.68065MR1200339
- [K] T. Kamae, Subsequences of normal sequences, Israel J. Math.16 (1973), 121-149. Zbl0272.28012MR338321
- [M] J.E. Maxfield, Normal k-tuples, Pacif. J. Math.3 (1953), 189-196. Zbl0050.27503MR53978
- [PS] K. Petersen, L. Shapiro, Induced flows, Trans. Amer. Math. Soc.177 (1973), 375-390. Zbl0229.54036MR322839
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.