Sur les entiers inférieurs à x ayant plus de log ( x ) diviseurs

Marc Deléglise; Jean-Louis Nicolas

Journal de théorie des nombres de Bordeaux (1994)

  • Volume: 6, Issue: 2, page 327-357
  • ISSN: 1246-7405

Abstract

top
Let τ ( n ) be the number of divisors of n ; let us define S λ ( x ) = C a r d n x ; τ ( n ) ( log x ) λ log 2 if λ 1 C a r d n x ; τ ( n ) < ( log x ) λ log 2 if λ < 1 It has been shown that, if we set f ( λ , x ) = x ( log x ) λ log λ - λ + 1 log log x the quotient S λ ( x ) / f ( λ , x ) is bounded for λ fixed. The aim of this paper is to give an explicit value for the inferior and superior limits of this quotient when λ 2 . For instance, when λ = 1 / log 2 , we prove lim inf S λ ( x ) f ( λ , x ) = 0 . 938278681143 and lim inf S λ ( x ) f ( λ , x ) = 1 . 148126773469

How to cite

top

Deléglise, Marc, and Nicolas, Jean-Louis. "Sur les entiers inférieurs à $x$ ayant plus de $\log (x)$ diviseurs." Journal de théorie des nombres de Bordeaux 6.2 (1994): 327-357. <http://eudml.org/doc/93607>.

@article{Deléglise1994,
author = {Deléglise, Marc, Nicolas, Jean-Louis},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {integers with more than prime factors; asymptotic behavior; divisor function; numerical computations},
language = {fre},
number = {2},
pages = {327-357},
publisher = {Université Bordeaux I},
title = {Sur les entiers inférieurs à $x$ ayant plus de $\log (x)$ diviseurs},
url = {http://eudml.org/doc/93607},
volume = {6},
year = {1994},
}

TY - JOUR
AU - Deléglise, Marc
AU - Nicolas, Jean-Louis
TI - Sur les entiers inférieurs à $x$ ayant plus de $\log (x)$ diviseurs
JO - Journal de théorie des nombres de Bordeaux
PY - 1994
PB - Université Bordeaux I
VL - 6
IS - 2
SP - 327
EP - 357
LA - fre
KW - integers with more than prime factors; asymptotic behavior; divisor function; numerical computations
UR - http://eudml.org/doc/93607
ER -

References

top
  1. [1] M. Balazard, J.-L. Nicolas, C. Pomerance, G. Tenenbaum, Grandes déviations pour certaines fonctions arithmétiques, J. Number Theory40 (1992), 146-164. Zbl0745.11041MR1149734
  2. [2] L. Comtet, Analyse combinatoire, Tomes 1 et 2. Presses universitaires de France, 1970. Zbl0221.05002MR262087
  3. [3] H.H. Crapo, Permanent by Möbius inversion, Journal of Combinatorial Theory4 (1968), 198-200. Zbl0162.03201MR220613
  4. [4] H.T. Davis, Table of the higher mathematical functions, The principia Press, Bloomington, Indiana, 1935, vol. 2. Zbl0013.21603
  5. [5] M. Deléglise, Applications des ordinateurs à la théorie des nombres, Thèse Université de Lyon1, 1991. 
  6. [6] P.D.T.A. Elliot, Probabilistic number theory, vol I and II, Grundlehren der Mathematischen Wissenschaften239-240, Springer-Verlag, 1979. Zbl0431.10029MR551361
  7. [7] P. Flageolet, I. Vardi, Numerical evaluation of Euler products, Prepublication. 
  8. [8] W.L. Glaisher, On the sums of the inverse powers of the prime numbers, Quartely Journal of Math25 (1891), 347-362. Zbl23.0275.02JFM23.0275.02
  9. [9] G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, Oxford at the Clarendon Press1962. Zbl0086.25803MR568909
  10. [10] K.K. Norton, On the number of restricted prime factors of an integer, Illinois J. Math20 (1976), 681-705. Zbl0329.10035MR419382
  11. [11] H. Riesel, Prime numbers and computer methods for factorization, Birkhaüser, 1985. Zbl0582.10001MR897531

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.