Polynomials whose Galois groups are Frobenius groups with prime order complement
Journal de théorie des nombres de Bordeaux (1994)
- Volume: 6, Issue: 2, page 391-406
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- [BJY] A.A. Bruen, C.U. Jensen, N. Yui, Polynomials with Frobenius groups of prime deegre as Galois groups II, J. Number Theory24 (1986), 305-359. Zbl0598.12009MR866976
- [Frob] G. Frobenius, Über Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitution seiner Gruppe, S. B. Akad. Wiss. Berlin (1896), 689-705. Zbl27.0091.04JFM27.0091.04
- [Jac] N. Jacobson, Basic algebra I, 2nd ed., Freeman, New York, 1985. Zbl0557.16001MR780184
- [Lang] S. Lang, Algebraic number theory, GTM 110, Springer-Verlag, New York, 1986. Zbl0601.12001MR1282723
- [LMO] J.C. Lagarias, H.L. Montgomery, A.M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), 271-296. Zbl0401.12014MR553223
- [Oes] J. Oesterlé, Versions effectives du théorème de Chebotarev sous l'hypothèse de Riemann généralisé, Astérisque61 (1979), 165-167. Zbl0418.12005
- [Rob] D.J.S. Robinson, A course in the theory of groups, GTM 80, Springer-Verlag, New York, 1982. Zbl0483.20001MR648604
- [Trag] B.M. Trager, Algebraic factoring and rational function integration, ACM Symposium on Symbolic and Algebraic Computation 1976 (Jenks, ed.), ACM Inc., New York, 1976, pp. 219-226. Zbl0498.12005
- [vdW] B. L. van der Waerden, Modern algebra, 2nd ed., vol. I, Ungar, New York, 1953. Zbl0039.00902
- [Will] C.J. Williamson, Odd degree polynomials with dihedral Galois groups, J. Number Theory34 (1990), 153-173. Zbl0814.11054MR1042489