Rank 1 forms, closed zones and laminae

Michel Deza; Viatcheslav Grishukhin

Journal de théorie des nombres de Bordeaux (2002)

  • Volume: 14, Issue: 1, page 103-112
  • ISSN: 1246-7405

Abstract

top
For a given lattice, we establish an equivalence between closed zones for the corresponding Voronoï polytope, suitable hyperplane sections of the corresponding Delaunay partition, and rank 1 quadratic forms which are extreme rays for the corresponding L -type domain.

How to cite

top

Deza, Michel, and Grishukhin, Viatcheslav. "Rank $1$ forms, closed zones and laminae." Journal de théorie des nombres de Bordeaux 14.1 (2002): 103-112. <http://eudml.org/doc/93832>.

@article{Deza2002,
abstract = {For a given lattice, we establish an equivalence between closed zones for the corresponding Voronoï polytope, suitable hyperplane sections of the corresponding Delaunay partition, and rank $1$ quadratic forms which are extreme rays for the corresponding $L$-type domain.},
author = {Deza, Michel, Grishukhin, Viatcheslav},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {quadratic forms; reduction theory; L-type; Delaunay polytopes},
language = {eng},
number = {1},
pages = {103-112},
publisher = {Université Bordeaux I},
title = {Rank $1$ forms, closed zones and laminae},
url = {http://eudml.org/doc/93832},
volume = {14},
year = {2002},
}

TY - JOUR
AU - Deza, Michel
AU - Grishukhin, Viatcheslav
TI - Rank $1$ forms, closed zones and laminae
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 1
SP - 103
EP - 112
AB - For a given lattice, we establish an equivalence between closed zones for the corresponding Voronoï polytope, suitable hyperplane sections of the corresponding Delaunay partition, and rank $1$ quadratic forms which are extreme rays for the corresponding $L$-type domain.
LA - eng
KW - quadratic forms; reduction theory; L-type; Delaunay polytopes
UR - http://eudml.org/doc/93832
ER -

References

top
  1. [1] E.P. Baranovskii, V.P. Grishukhin, Non-rigidity degree of a lattice and rigid lattices, European J. Combin.22 (2001), 921-935. Zbl0995.52009MR1857255
  2. [2] B.N. Delaunay (DELONE), Sur la partition régulière de l'espace à 4 dimensions. Izvestia AN SSSR ser. matem.1 (1929), 79-110 et 2 (1929), 145-164. Zbl56.1120.02JFM56.1120.02
  3. [3] P. Engel, Investigations of parallelohedra in Rd. In: P.Engel, H.Syta eds., Voronoi's impact on modern science, Institute of Mathematics, Kyiv1998, vol. 2, 22-60. Zbl0955.51011
  4. [4] R.M. Erdahl, S.S. Ryshkov, On lattice dicing. European J. Combin.15 (1994), 459-481. Zbl0809.52019MR1292957
  5. [5] S.S. Ryshkov, E.P. Baranovskii, C-types of n-dimensional lattices and 5-dimensional primitive parallelohedra (with application to the theory of covering). Trudy of Steklov's Mathematical Institute, vol. 137 (1976), 3-131. (Translated as: Proceedings of Steklov Institute of Mathematics1978, No 4.) Zbl0419.10031
  6. [6] G.F. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques - Deuxième mémoire. J. Reine Angew. Math.134 (1908), 198-287 et 136 (1909), 67-178. Zbl38.0261.01JFM39.0274.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.