The product of linear forms in a field of series and the Riemann hypothesis for curves
Mémoires de la Société Mathématique de France (1971)
- Volume: 25, page 17-27
- ISSN: 0249-633X
Access Full Article
topHow to cite
topReferences
top- [1] J.V. ARMITAGE. On a method of Mordell in the geometry of numbers, Mathematika 2 (1955), 132-140. Zbl0066.03602MR17,1060a
- [2] J.V. ARMITAGE. The product of n linear forms in a field of series, Mathematika 4 (1957), 132-137. Zbl0079.27303MR20 #38
- [3] J.V. ARMITAGE. Algebraic functions and an analogue of the geometry of numbers : the Riemann-Roch Theorem, Archiv der Mathematik 18 (1967), 383-393. Zbl0156.41102MR37 #192
- [4] C. CHEVALLEY. L'hypothèse de Riemann pour les corps de fonctions algébriques de caractéristique p, Séminaire Bourbaki 1 (1948/1949), n° 3 and n° 9. Zbl0116.03001
- [5] H. HASSE. Zur Theorie der abstrakten elliptischen Funktionenkörper, J. reine u. angew. Math. 175 (1936), 69-88 and 193-208. Zbl0014.24901
- [6] K. MAHLER. An analogue to Minkowski's geometry of numbers in a field of series, Ann. Math., II Ser. 42 (1941), 481-522. Zbl0027.16001MR2,350cJFM67.0140.01
- [7] A. WEIL. Sur les courbes algébriques et les variétés qui s'en déduisent, Actualités scientifiques et industrielles, n° 1041, Paris, (1948). Zbl0036.16001MR10,262c
- [8] A. WEIL. Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497-508. Zbl0032.39402MR10,592e