Perturbations compactes des représentations d'un groupe dans un espace de Hilbert

Pierre de La Harpe; Max Karoubi

Mémoires de la Société Mathématique de France (1976)

  • Volume: 46, page 41-65
  • ISSN: 0249-633X

How to cite

top

La Harpe, Pierre de, and Karoubi, Max. "Perturbations compactes des représentations d'un groupe dans un espace de Hilbert." Mémoires de la Société Mathématique de France 46 (1976): 41-65. <http://eudml.org/doc/94728>.

@article{LaHarpe1976,
author = {La Harpe, Pierre de, Karoubi, Max},
journal = {Mémoires de la Société Mathématique de France},
language = {fre},
pages = {41-65},
publisher = {Société mathématique de France},
title = {Perturbations compactes des représentations d'un groupe dans un espace de Hilbert},
url = {http://eudml.org/doc/94728},
volume = {46},
year = {1976},
}

TY - JOUR
AU - La Harpe, Pierre de
AU - Karoubi, Max
TI - Perturbations compactes des représentations d'un groupe dans un espace de Hilbert
JO - Mémoires de la Société Mathématique de France
PY - 1976
PB - Société mathématique de France
VL - 46
SP - 41
EP - 65
LA - fre
UR - http://eudml.org/doc/94728
ER -

References

top
  1. [1] M.F. ATIYAH et F. HIRZEBRUCH, Vector bundles and homogeneous spaces, Proceedings of Symposia in Pure Mathematics, vol. 3, 7-38, Amer. Math. Soc. 1961. Zbl0108.17705MR25 #2617
  2. [2] N. BOURBAKI, Intégration, chap. I à IV, 2e édit., Hermann 1965. 
  3. [3] L.G. BROWN, R.G. DOUGLAS et P.A. FILLMORE, Unitary equivalence modulo the compact operators and extensions of C*-algebras, Lecture Notes in Mathematics, vol. 345, 58-128, Springer 1973. Zbl0277.46053MR52 #1378
  4. [4] L.G. BROWN, communication privée. 
  5. [5] V.M. BUHSTABER et A.S. MISCENKO, A K-theory on the category of infinite cell complexes, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 560-604 = AMS Translations of the same 2 (1968), 515-556. MR40 #6537
  6. [6] J.W. CALKIN, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. 42 (1941), 839-873. Zbl0063.00692MR3,208c
  7. [7] J. DIEUDONNE, Eléments d'analyse, 4, Gauthier-Villars 1971. Zbl0217.00101
  8. [8] J. DIXMIER, Les C✳-algèbres et leurs représentations, 2e édit., Gauthier-Villars 1969. Zbl0174.18601
  9. [9] P. DE LA HARPE et M. KAROUBI, Perturbations compactes des représentations d'un groupe dans un espace de Hilbert, C.R. Acad. Sc. Paris, Sér. A, 1975. Zbl0313.22006MR52 #10948
  10. [10] G. HOCHSCHILD, The structure of Lie groups, Holden-Day, 1965. Zbl0131.02702MR34 #7696
  11. [11] L. INGELSTAM, Real Banach algebras, Ark. Mat. 5 (1964), 239-270. Zbl0149.09701MR30 #2358
  12. [12] K. IWASAWA, On some types of topological groups, Ann. of Math. 30 (1949), 507-558. Zbl0034.01803MR10,679a
  13. [13] N. KUIPER, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19-30. Zbl0129.38901MR31 #4034
  14. [14] S. LANG, Introduction aux variétés différentiables, Dunod 1967. Zbl0154.21402MR35 #3706
  15. [15] C.L. OLSEN, A structure theorem for polynomially compact operators, Am. J. Math. 93, (1971), 686-698. Zbl0239.47017MR53 #8947
  16. [16] R.S. PALAIS, Seminar on the Atiyah-Singer index theorem, Princeton Univ. Press 1965. Zbl0137.17002MR33 #6649
  17. [17] R.S. PALAIS, Homotopy theory of infinite dimensional manifolds, Topology 5, (1966), 1-16. Zbl0138.18302MR32 #6455
  18. [18] C.R. PUTNAM, Commutation properties of Hilbert space operators and related topics, Springer 1967. Zbl0149.35104MR36 #707
  19. [19] C.E. RICKART, General theory of Banach algebras, Van Nostrand 1960. Zbl0095.09702MR22 #5903
  20. [20] I.M. SINGER, Uniformly continuous representations of Lie groups, Ann. of Math. 56 (1952), 242-247. Zbl0049.35802MR14,135a
  21. [21] J. STASHEFF, H-spaces from a homotopy point of view, Lecture Notes in Mathematics, vol. 161, Springer 1970. Zbl0205.27701MR42 #5261
  22. [22] F.J. THAYER-FABREGA, Obstructions to lifting ✳-morphisms into the Calkin algebra, Tulane University, 1973. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.