Calcul du centralisateur d'un groupe de permutations

Max Fontet

Mémoires de la Société Mathématique de France (1977)

  • Volume: 49-50, page 53-63
  • ISSN: 0249-633X

How to cite

top

Fontet, Max. "Calcul du centralisateur d'un groupe de permutations." Mémoires de la Société Mathématique de France 49-50 (1977): 53-63. <http://eudml.org/doc/94767>.

@article{Fontet1977,
author = {Fontet, Max},
journal = {Mémoires de la Société Mathématique de France},
language = {fre},
pages = {53-63},
publisher = {Société mathématique de France},
title = {Calcul du centralisateur d'un groupe de permutations},
url = {http://eudml.org/doc/94767},
volume = {49-50},
year = {1977},
}

TY - JOUR
AU - Fontet, Max
TI - Calcul du centralisateur d'un groupe de permutations
JO - Mémoires de la Société Mathématique de France
PY - 1977
PB - Société mathématique de France
VL - 49-50
SP - 53
EP - 63
LA - fre
UR - http://eudml.org/doc/94767
ER -

References

top
  1. (1) AHO A.V., J.F. HOPCROFT, D.D. ULLMAN. — The Design and Analysis of computer Algorithms. — Addison-Wesley (1974). Zbl0326.68005
  2. (2) BERGE C. — Graphes et Hypergraphes. — Dunod (1970). Zbl0213.25702MR50 #9641
  3. (3) CORI R. — Un code pour les graphes planaires et ses applications. — Thèse Paris (1973). Zbl0313.05115
  4. (4) EDMONDS J.R. — A combinatorial representation for oriented polyhedral surfaces M.A. Thesis University of Mouyland U.S.A. (1960) 
  5. (5) FONTET M. — Un résultat en théorie des groupes de permutations et son application au calcul effectif du groupe d'automorphismes d'un automate fini. — 2nd Colloquium on Automata, languages and programming Saarbrücker (1974) 335-341. Zbl0398.68026MR55 #5725
  6. (6) FONTET M. — Test d'isomorphie d'hypergraphes planaires 2nd Professional Conférence on Automata Theory and Formal Languages. — Kaiserlautern (1975) 93-98. Zbl0316.68026
  7. (7) FONTET M. — Test d'isomorphie de deux graphes planaires. — Journées Informatique et Combinatoire. Bordeaux (1975) Zbl0345.05127
  8. (8) FONTET M. — A linear algorithm for testing isomorphism of planar graphs. — Third International Colloquium on Automata, Languages and Programming Edinburg Juillet 1976. Zbl0351.05127
  9. (9) HOPCROFT J.E., R.E. TARJAN. — Isomorphism of planar graphs in complexity of Computer Computations R.E. Miller and J.W. Thatcher Eds Plenum Press New-York 131-152 (1972). Zbl0436.05021MR53 #7114
  10. (10) HOPCROFT J.E., R.E. TARJAN. — A V log V algorithm for isomorphism of triconnected planar graphs. — J. Comput. Syst. Sci. 7, 323-331 (1973). Zbl0274.05103MR49 #10178
  11. (11) HOPCROFT J.E., J.K. WONG. — A linear time algorithm for isomorphism of planar graphs. — (Preliminary report). 6th ACM SIGACT (1974). Zbl0369.05028MR55 #6934
  12. (12) JACQUES A. — Sur le genre d'une paire de substitutions. — C.R. Acad. Sci. Paris 267, 625-627 (1968). Zbl0187.20902MR41 #6950
  13. (13) SIMS C.C. — Computational methods in the study of permutation groups. — dans J. LEECH ed. Computational problems in abstract (Pergamon Press 1970) 169-183. Zbl0215.10002MR41 #1856
  14. (14) SIMS C.C. — Determining the Conjugacy Classes of a Permutation group. — SIAM — AMS Proceedings, vol IV, 191-195 (1971). Zbl0253.20001MR49 #2901
  15. (15) WIELANDT H. — Finite Permutation groups Academic Press (1964). Zbl0138.02501MR32 #1252

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.