Sur les fibrés uniformes de rang ( n + 1 ) sur P n

Philippe Ellia

Mémoires de la Société Mathématique de France (1982)

  • Volume: 7, page 1-60
  • ISSN: 0249-633X

How to cite

top

Ellia, Philippe. "Sur les fibrés uniformes de rang $(n+1)$ sur $P^n$." Mémoires de la Société Mathématique de France 7 (1982): 1-60. <http://eudml.org/doc/94830>.

@article{Ellia1982,
author = {Ellia, Philippe},
journal = {Mémoires de la Société Mathématique de France},
keywords = {uniform vector bundle; grassmannian; splitting type; homogeneous algebraic vector bundle},
language = {fre},
pages = {1-60},
publisher = {Société mathématique de France},
title = {Sur les fibrés uniformes de rang $(n+1)$ sur $P^n$},
url = {http://eudml.org/doc/94830},
volume = {7},
year = {1982},
}

TY - JOUR
AU - Ellia, Philippe
TI - Sur les fibrés uniformes de rang $(n+1)$ sur $P^n$
JO - Mémoires de la Société Mathématique de France
PY - 1982
PB - Société mathématique de France
VL - 7
SP - 1
EP - 60
LA - fre
KW - uniform vector bundle; grassmannian; splitting type; homogeneous algebraic vector bundle
UR - http://eudml.org/doc/94830
ER -

References

top
  1. [Ba-Ell] BALLICO, E., ELLIA, Ph., Fibrés homogènes sur ℙn, (à paraître) 
  2. [Ba-VdV] BARTH, W., VAN de VEN, A., On the geometry in codimension 2 of Grassman manifolds, in Classification of Algebraic Varieties and Compact Complex Manifolds, Lecture Notes in Mathematics, 412, Springer Verlag, (1974) Zbl0299.14024MR50 #7139
  3. [Dr] DREZET, J.M., Exemples de fibrés uniformes non-homogènes sur ℙn, C.R.A.S., t. 291, série A, 125-128, (1980) Zbl0456.14012MR83i:14010
  4. [Ein] EIN, L., Stable Vector bundles on Projective spaces in char ρ &gt; o, Math. Ann., 254, 53-72, (1980) Zbl0431.14003MR82d:14010
  5. [Ele,1] ELENCWAJG, G., Les fibrés uniformes de rang 3 sur ℙ2 (ℂ) sont homogènes, Math. Ann., 231, 217-227, (1978) Zbl0378.14003MR58 #1278
  6. [Ele,2] ELENCWAJG, G., Des fibrés uniformes non-homogènes, Math. Ann., 239, 185-192, (1979) Zbl0498.14007MR80k:32030
  7. [Ele,3] ELENCWAJG, G., Fibrés uniformes de rang élevé sur ℙ2, Fourrier, Grenoble, 31, 4, 89-114, (1981) Zbl0483.14003MR83c:14012
  8. [Ele-For] ELENCWAJG, G., FOSTER, O., Bounding cohomology groups of vector bundles on ℙn, Math. Ann., 246, 251-270, (1980) Zbl0432.14011
  9. [E-H-S] ELENCWAJG, G., HIRSCHOWITZ, A., SCHNEIDER, M., Les fibrés uniformes de rang au plus n sur ℙn (ℂ) sont ceux qu'on croit, Proceedings of the Nice Conference (1979) on Vector Bundles and Differential equations, Progress in Math., 7, Birkhaüser, Boston, 37-63, (1980) Zbl0456.32009
  10. [Ell] ELLIA, Ph., Des fibrés uniformes non-homogènes de rang 2n+1 sur ℙn (ℂ), Journal für die reine und ang. Math., 321, 113-119, (1981) Zbl0437.14006MR82g:14019b
  11. [Ha-Na] HARDER, G., NARASIMHAN, M.S., On the Cohomology groups of Moduli Spaces of Vector Bundles on Curves, Math. Ann., 212, 213-248, (1974) Zbl0324.14006MR51 #509
  12. [Ha] HARTSHORNE, R., Algebraic Geometry, Graduate texts in Mathematics, vol. 52, Berlin, Heidelberg, New York, Springer Verlag, (1977) Zbl0367.14001MR57 #3116
  13. [Lang] LANG, S., Algebra, Addison Wesley, (1977) 
  14. [O-S-S] OKONEK, C., SCHNEIDER, M., SPINDLER, H., Vector bundles on complex projective spaces, Progress in Math., 3, Birkhaüser, Boston, (1980) Zbl0438.32016MR81b:14001
  15. [Sa] SATO, E., Uniform vector bundles on a projective space, J. Math, Soc., Japan. 28, 123-132, (1976) Zbl0315.14003MR53 #2952
  16. [VdV] VAN de VEN, A., On uniform vector bundles, Math., Ann., 195, 245-248, (1978). Zbl0215.43202MR45 #276

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.