Fibrés uniformes de rang élevé sur 2

Georges Elencwajg

Annales de l'institut Fourier (1981)

  • Volume: 31, Issue: 4, page 89-114
  • ISSN: 0373-0956

Abstract

top
A holomorphic vector bundle on P 2 is said to be uniform if its pull-backs by all linear embeddings P 1 P 2 are isomorphic. We classify uniform bundles of rank 4 on P 2 .

How to cite

top

Elencwajg, Georges. "Fibrés uniformes de rang élevé sur ${\mathbb {P}}_2$." Annales de l'institut Fourier 31.4 (1981): 89-114. <http://eudml.org/doc/74519>.

@article{Elencwajg1981,
abstract = {Un fibré vectoriel holomorphe sur $\{\bf P\}_2$ est dit uniforme si ses images réciproques sous tous les plongements linéaires $\{\bf P\}_1 \rightarrow \{\bf P\}_2$ sont isomorphes. Nous classons les fibrés uniformes de rang 4 sur $\{\bf P\}_2$.},
author = {Elencwajg, Georges},
journal = {Annales de l'institut Fourier},
keywords = {splitting type of uniform vector bundle of rank 4},
language = {fre},
number = {4},
pages = {89-114},
publisher = {Association des Annales de l'Institut Fourier},
title = {Fibrés uniformes de rang élevé sur $\{\mathbb \{P\}\}_2$},
url = {http://eudml.org/doc/74519},
volume = {31},
year = {1981},
}

TY - JOUR
AU - Elencwajg, Georges
TI - Fibrés uniformes de rang élevé sur ${\mathbb {P}}_2$
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 4
SP - 89
EP - 114
AB - Un fibré vectoriel holomorphe sur ${\bf P}_2$ est dit uniforme si ses images réciproques sous tous les plongements linéaires ${\bf P}_1 \rightarrow {\bf P}_2$ sont isomorphes. Nous classons les fibrés uniformes de rang 4 sur ${\bf P}_2$.
LA - fre
KW - splitting type of uniform vector bundle of rank 4
UR - http://eudml.org/doc/74519
ER -

References

top
  1. [1] J. M. DREZET, Fibrés uniformes sur P2, Thèse 3e cycle, (1980). Zbl0456.14012
  2. [2] G. ELENCWAJG, Les fibrés uniformes de rang 3 sur P2(C) sont homogènes, Math. Ann., 231 (1978), 217-227. Zbl0378.14003MR58 #1278
  3. [3] G. ELENCWAJG, Des fibrés uniformes non homogènes, Math. Ann., 239 (1979), 185-192. Zbl0498.14007MR80k:32030
  4. [4] G. ELENCWAJG, Thèse de Doctorat d'État, Nice (1979). 
  5. [5] G. ELENCWAJG et O. FORSTER, Bounding Cohomology groups of Vector Bundles on Pn, Math. Ann., 246 (1980), 251-270. Zbl0432.14011MR81h:32035
  6. [6] G. ELENCWAJG, A. HIRSCHOWITZ et M. SCHNEIDER, Les fibrés uniformes de rang au plus n sur Pn(C) sont ceux qu'on croit, Proceedings of the Nice Conference 1979 on Vector Bundles and Differential equations, Birkhäuser, Boston, 1980. Zbl0456.32009MR81k:14015
  7. [7] R. HARTSHORNE, Algebraic Geometry. Graduate texts in mathematics, Vol. 52, Berlin, Heidelberg, New-York, Springer-Verlag, 1977. Zbl0367.14001MR57 #3116
  8. [8] F. HIRZEBRUCH, Topological Methods in Algebraic Geometry, 3rd ed. Berlin, Heidelberg, New-York. Springer Verlag 1966. Zbl0138.42001MR34 #2573
  9. [9] S. KLEIMAN, The enumerative theory of singularities, Real and Complex Singularities, Oslo 1976, Sÿthoff et Noordhoof (1977). Zbl0385.14018
  10. [10] C. OKONEK, M. SCHNEIDER et H. SPINDLER, Vector Bundles on Complex Projective Spaces, Progress in Mathematics, 3, Boston, Basel, Stuttgart, Birkhäuser, 1980. Zbl0438.32016MR81b:14001
  11. [11] H. SPINDLER, Der Satz von Grauert-Mülich für beliebige semistabile holomorphe Vektorraumbündel über dem n-dimensionalen komplex-projektiven Raum, Math. Ann., 243 (1979), 131-141. Zbl0435.32018MR81b:14008
  12. [12] A. VAN DE VEN. On uniform vector bundles, Math. Ann., 195 (1972), 246-248. Zbl0215.43202MR45 #276

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.