Weighted orbital integrals on
Mémoires de la Société Mathématique de France (1984)
- Volume: 15, page 201-217
- ISSN: 0249-633X
Access Full Article
topHow to cite
topHerb, Rebecca A.. "Weighted orbital integrals on $SL(2,{\mathbb {R}})$." Mémoires de la Société Mathématique de France 15 (1984): 201-217. <http://eudml.org/doc/94840>.
@article{Herb1984,
author = {Herb, Rebecca A.},
journal = {Mémoires de la Société Mathématique de France},
keywords = {Selberg trace formula; SL(2,; Fourier transform; weighted orbital integral},
language = {eng},
pages = {201-217},
publisher = {Société mathématique de France},
title = {Weighted orbital integrals on $SL(2,\{\mathbb \{R\}\})$},
url = {http://eudml.org/doc/94840},
volume = {15},
year = {1984},
}
TY - JOUR
AU - Herb, Rebecca A.
TI - Weighted orbital integrals on $SL(2,{\mathbb {R}})$
JO - Mémoires de la Société Mathématique de France
PY - 1984
PB - Société mathématique de France
VL - 15
SP - 201
EP - 217
LA - eng
KW - Selberg trace formula; SL(2,; Fourier transform; weighted orbital integral
UR - http://eudml.org/doc/94840
ER -
References
top- [1] J.G. Arthur (a) The Selberg trace formula for groups of F-rank one, Ann. of Math. 100 (1974), 326-385. (b) Some tempered distributions on semisimple groups of real rank one, Ann. of Math. 100 (1974), 553-584. (c) The characters of discrete series as orbital integrals, Inv. Math. 32 (1976), 205-261. (d) On the invariant distributions associated to weighted orbital integrals, preprint. Zbl0258.22014MR50 #12920
- [2] L. Cohn, Analytic Theory of the Harish-Chandra c-function, Lecture Notes in Math, 429, Springer-Verlag, New York, 1974. Zbl0342.33026MR54 #10496
- [3] A. Erdelyi, editor, Higher Trancendental Functions, vol. 1, McGraw-Hill, New York, 1953. Zbl0051.30303
- [4] Harish-Chandra, (a) Harmonic analysis on real reductive groups, I. J. Funct. Anal., 19, (1975), 104-204. (b) Harmonic analysis on real reductive groups, II, Inv. Math., 36 (1976), 1-55. (c) Harmonic analysis on real reductive groups, III, Ann. of Math., 104 (1976), 117-201. Zbl0315.43002
- [5] R. Herb (a) An inversion formula for weighted orbital integrals, Compositio Math., 47 (1982), 333-354. (b) Discrete series characters and Fourier inversion on real semisimple Lie groups, Trans. A.M.S., 277 (1983), 241-262. Zbl0516.22007MR84c:22011
- [6] P. Sally and G. Warner, The Fourier transform on semisimple Lie groups of real rank one, Acta Math., 131 (1973), 1-26. Zbl0305.43007MR56 #8755
- [7] G. Warner, Selberg's trace formula for nonuniform lattices: the R-rank one case, Advances in Math. Studies, 6 (1979), 1-142. Zbl0466.10018MR81f:10044
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.