Weighted orbital integrals on S L ( 2 , )

Rebecca A. Herb

Mémoires de la Société Mathématique de France (1984)

  • Volume: 15, page 201-217
  • ISSN: 0249-633X

How to cite

top

Herb, Rebecca A.. "Weighted orbital integrals on $SL(2,{\mathbb {R}})$." Mémoires de la Société Mathématique de France 15 (1984): 201-217. <http://eudml.org/doc/94840>.

@article{Herb1984,
author = {Herb, Rebecca A.},
journal = {Mémoires de la Société Mathématique de France},
keywords = {Selberg trace formula; SL(2,; Fourier transform; weighted orbital integral},
language = {eng},
pages = {201-217},
publisher = {Société mathématique de France},
title = {Weighted orbital integrals on $SL(2,\{\mathbb \{R\}\})$},
url = {http://eudml.org/doc/94840},
volume = {15},
year = {1984},
}

TY - JOUR
AU - Herb, Rebecca A.
TI - Weighted orbital integrals on $SL(2,{\mathbb {R}})$
JO - Mémoires de la Société Mathématique de France
PY - 1984
PB - Société mathématique de France
VL - 15
SP - 201
EP - 217
LA - eng
KW - Selberg trace formula; SL(2,; Fourier transform; weighted orbital integral
UR - http://eudml.org/doc/94840
ER -

References

top
  1. [1] J.G. Arthur (a) The Selberg trace formula for groups of F-rank one, Ann. of Math. 100 (1974), 326-385. (b) Some tempered distributions on semisimple groups of real rank one, Ann. of Math. 100 (1974), 553-584. (c) The characters of discrete series as orbital integrals, Inv. Math. 32 (1976), 205-261. (d) On the invariant distributions associated to weighted orbital integrals, preprint. Zbl0258.22014MR50 #12920
  2. [2] L. Cohn, Analytic Theory of the Harish-Chandra c-function, Lecture Notes in Math, 429, Springer-Verlag, New York, 1974. Zbl0342.33026MR54 #10496
  3. [3] A. Erdelyi, editor, Higher Trancendental Functions, vol. 1, McGraw-Hill, New York, 1953. Zbl0051.30303
  4. [4] Harish-Chandra, (a) Harmonic analysis on real reductive groups, I. J. Funct. Anal., 19, (1975), 104-204. (b) Harmonic analysis on real reductive groups, II, Inv. Math., 36 (1976), 1-55. (c) Harmonic analysis on real reductive groups, III, Ann. of Math., 104 (1976), 117-201. Zbl0315.43002
  5. [5] R. Herb (a) An inversion formula for weighted orbital integrals, Compositio Math., 47 (1982), 333-354. (b) Discrete series characters and Fourier inversion on real semisimple Lie groups, Trans. A.M.S., 277 (1983), 241-262. Zbl0516.22007MR84c:22011
  6. [6] P. Sally and G. Warner, The Fourier transform on semisimple Lie groups of real rank one, Acta Math., 131 (1973), 1-26. Zbl0305.43007MR56 #8755
  7. [7] G. Warner, Selberg's trace formula for nonuniform lattices: the R-rank one case, Advances in Math. Studies, 6 (1979), 1-142. Zbl0466.10018MR81f:10044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.