An inversion formula for weighted orbital integrals
Compositio Mathematica (1982)
- Volume: 47, Issue: 3, page 333-354
- ISSN: 0010-437X
Access Full Article
topHow to cite
topHerb, Rebecca A.. "An inversion formula for weighted orbital integrals." Compositio Mathematica 47.3 (1982): 333-354. <http://eudml.org/doc/89578>.
@article{Herb1982,
author = {Herb, Rebecca A.},
journal = {Compositio Mathematica},
keywords = {semisimple real Lie group; weighted orbital integrals; Selberg trace formula; cusp forms},
language = {eng},
number = {3},
pages = {333-354},
publisher = {Martinus Nijhoff Publishers},
title = {An inversion formula for weighted orbital integrals},
url = {http://eudml.org/doc/89578},
volume = {47},
year = {1982},
}
TY - JOUR
AU - Herb, Rebecca A.
TI - An inversion formula for weighted orbital integrals
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 47
IS - 3
SP - 333
EP - 354
LA - eng
KW - semisimple real Lie group; weighted orbital integrals; Selberg trace formula; cusp forms
UR - http://eudml.org/doc/89578
ER -
References
top- [1] J. Arthur: (a) The Selberg trace formula for groups of F-rank one. Ann. of Math.100 (1974) 326-385. (b) Some tempered distributions on semisimple groups of real rank one. Ann. of Math.100 (1974) 553-584. (c) The characters of discrete series as orbital integrals. Inv. Math.32 (1976) 205-261. (d) A trace formula for reductive groups I. Terms associated to classes in G(Q). Duke J.45 (1978) 911-952. MR360470
- [2] Harish- Chandra: (a) Differential operators on a semisimple Lie-algebra. Am. J. Math.79 (1957) 87-120. (b) Harmonic analysis on real reductive groups, I. J. Fund. Anal.19 (1975) 104-204. (c) Harmonic analysis on real reductive groups, III. Ann. of Math.104 (1976) 117-201. Zbl0331.22007MR84104
- [3] R. Herb: (a) A uniqueness theorem for tempered invariant eigendistributions. Pac. J. Math.67 (1976) 203-208. (b) Discrete series characters and Fourier inversion on semisimple real Lie groups, to appear T.A.M.S. Zbl0323.22008MR486319
- [4] T. Hirai: Invariant eigendistributions of Laplace operators on real simple Lie groups, II. Jap. J. Math.2 (1976) 27-89. Zbl0341.22006MR578894
- [5] M.S. Osborne and G. Warner: The Selberg trace formula I: Γ-rank one lattices. J. für Reine und Angewandte Math.324 (1981) 1-113. Zbl0469.22007
- [6] L. Schwartz: Théorie des distributions, I. Hermann, Paris, 1957. Zbl0078.11003MR209834
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.