An inversion formula for weighted orbital integrals

Rebecca A. Herb

Compositio Mathematica (1982)

  • Volume: 47, Issue: 3, page 333-354
  • ISSN: 0010-437X

How to cite

top

Herb, Rebecca A.. "An inversion formula for weighted orbital integrals." Compositio Mathematica 47.3 (1982): 333-354. <http://eudml.org/doc/89578>.

@article{Herb1982,
author = {Herb, Rebecca A.},
journal = {Compositio Mathematica},
keywords = {semisimple real Lie group; weighted orbital integrals; Selberg trace formula; cusp forms},
language = {eng},
number = {3},
pages = {333-354},
publisher = {Martinus Nijhoff Publishers},
title = {An inversion formula for weighted orbital integrals},
url = {http://eudml.org/doc/89578},
volume = {47},
year = {1982},
}

TY - JOUR
AU - Herb, Rebecca A.
TI - An inversion formula for weighted orbital integrals
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 47
IS - 3
SP - 333
EP - 354
LA - eng
KW - semisimple real Lie group; weighted orbital integrals; Selberg trace formula; cusp forms
UR - http://eudml.org/doc/89578
ER -

References

top
  1. [1] J. Arthur: (a) The Selberg trace formula for groups of F-rank one. Ann. of Math.100 (1974) 326-385. (b) Some tempered distributions on semisimple groups of real rank one. Ann. of Math.100 (1974) 553-584. (c) The characters of discrete series as orbital integrals. Inv. Math.32 (1976) 205-261. (d) A trace formula for reductive groups I. Terms associated to classes in G(Q). Duke J.45 (1978) 911-952. MR360470
  2. [2] Harish- Chandra: (a) Differential operators on a semisimple Lie-algebra. Am. J. Math.79 (1957) 87-120. (b) Harmonic analysis on real reductive groups, I. J. Fund. Anal.19 (1975) 104-204. (c) Harmonic analysis on real reductive groups, III. Ann. of Math.104 (1976) 117-201. Zbl0331.22007MR84104
  3. [3] R. Herb: (a) A uniqueness theorem for tempered invariant eigendistributions. Pac. J. Math.67 (1976) 203-208. (b) Discrete series characters and Fourier inversion on semisimple real Lie groups, to appear T.A.M.S. Zbl0323.22008MR486319
  4. [4] T. Hirai: Invariant eigendistributions of Laplace operators on real simple Lie groups, II. Jap. J. Math.2 (1976) 27-89. Zbl0341.22006MR578894
  5. [5] M.S. Osborne and G. Warner: The Selberg trace formula I: Γ-rank one lattices. J. für Reine und Angewandte Math.324 (1981) 1-113. Zbl0469.22007
  6. [6] L. Schwartz: Théorie des distributions, I. Hermann, Paris, 1957. Zbl0078.11003MR209834

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.