Sur le transfert des intégrales orbitales pour les groupes linéaires (cas p -adique)

François Courtès

Mémoires de la Société Mathématique de France (1997)

  • Volume: 69, page 1-140
  • ISSN: 0249-633X

How to cite

top

Courtès, François. "Sur le transfert des intégrales orbitales pour les groupes linéaires (cas $p$-adique)." Mémoires de la Société Mathématique de France 69 (1997): 1-140. <http://eudml.org/doc/94921>.

@article{Courtès1997,
author = {Courtès, François},
journal = {Mémoires de la Société Mathématique de France},
keywords = {orbital integrals; over a -adic field; linear groups; trace formula; transfer of orbital integrals; Steinberg representation},
language = {fre},
pages = {1-140},
publisher = {Société mathématique de France},
title = {Sur le transfert des intégrales orbitales pour les groupes linéaires (cas $p$-adique)},
url = {http://eudml.org/doc/94921},
volume = {69},
year = {1997},
}

TY - JOUR
AU - Courtès, François
TI - Sur le transfert des intégrales orbitales pour les groupes linéaires (cas $p$-adique)
JO - Mémoires de la Société Mathématique de France
PY - 1997
PB - Société mathématique de France
VL - 69
SP - 1
EP - 140
LA - fre
KW - orbital integrals; over a -adic field; linear groups; trace formula; transfer of orbital integrals; Steinberg representation
UR - http://eudml.org/doc/94921
ER -

References

top
  1. [1] R.W. Carter. Finite groups of Lie type. John Wiley & Sons, 1985. Zbl0567.20023MR87d:20060
  2. [2] D. Goldstein. Thesis. MSRI, Berkeley, 1990. 
  3. [3] Harish-Chandra. Harmonic analysis on reductive p-adic groups. (notes par G. van Dijk) Lecture Notes in Mathematics 102, Springer, 1970. Zbl0202.41101MR54 #2889
  4. [4] Harish-Chandra. Admissible invariant distributions on reductive p-adic groups. Œuvres complètes, vol. 4. Zbl0433.22012
  5. [5] R. Howe. Tamely ramified supercuspidal representations of GLn. Pacific Journal of Mathematics, 73, 1977, pp. 437-460. Zbl0404.22019MR58 #11241
  6. [6] D. Kazhdan. Cuspidal geometry of p-adic groups. Journal d'Analyse Mathématique, 47, 1986, pp. 1-36. Zbl0634.22009MR88g:22017
  7. [7] D. Kazhdan. On lifting. in Lie group representations II. Lecture Notes in Mathematics, 1401, Springer, 1984, pp. 209-249. Zbl0538.20014MR86h:22029
  8. [8] J.P. Labesse, R.P. Langlands. L-Indistinguishability for SL2. Canadian Journal of Mathematics, 31, 1979, pp. 726-785. Zbl0421.12014MR81b:22017
  9. [9] R.P. Langlands. Les débuts d'une formule des traces stable. Publications mathématiques de l'université Paris VII, 1983. Zbl0532.22017MR85d:11058
  10. [10] R.P. Langlands, D. Shelstad. Definition of Transfer Factors. Math. Ann., 278, 1987, pp. 219-271. Zbl0644.22005MR89c:11172
  11. [11] R.P. Langlands, D. Shelstad. Descent for transfer factors. Grothendieck Festschrift II, Progress in Math., 87, 1990, pp. 485-563. Zbl0743.22009MR92i:22016
  12. [12] G. Lusztig. Affine Hecke algebras and their graded versions. J. AMS. Zbl0715.22020
  13. [13] J. Shalika. A theorem on semi-simple p-adic groups. Annals of Mathematics, 95, 1972, pp. 226-242. Zbl0281.22011MR48 #2310
  14. [14] Allan J. Silberger. Harmonic analysis on reductive p-adic groups. Princeton University Press and University of Tokyo Press, 1979. Zbl0458.22006
  15. [15] G. van Dijk. Computation of certain induced characters of p-adic groups. Math. Ann., 199, 1972, pp. 229-240. Zbl0231.22018MR49 #3043
  16. [16] J.L. Waldspurger. Sur les germes de Shalika pour les groupes linéaires. Math. Ann., 284, 1989, pp. 199-221. Zbl0651.22010MR91d:22016
  17. [17] J.L. Waldspurger. Sur les intégrales orbitales tordues pour les groupes linéaires : un lemme fondamental. Canadian Journal of Mathematics, 43, 1991, pp. 852-896. Zbl0760.22026MR92k:22030
  18. [18] A.V. Zelevinsky. Representations of finite classical groups. Lecture Notes in Mathematics, 869, Springer, 1981. Zbl0465.20009MR83k:20017
  19. [19] A. V. Zelevinsky. Induced representations of reductive p-adic groups, II. Annales scientifiques de l'Ecole Normale Supérieure, 4ème série, 13, 1980, pp. 165-210. Zbl0441.22014MR83g:22012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.