Limits of certain subhomogeneous C * -algebras

Klaus Thomsen

Mémoires de la Société Mathématique de France (1997)

  • Volume: 71, page 1-125
  • ISSN: 0249-633X

How to cite

top

Thomsen, Klaus. "Limits of certain subhomogeneous $C^*$-algebras." Mémoires de la Société Mathématique de France 71 (1997): 1-125. <http://eudml.org/doc/94923>.

@article{Thomsen1997,
author = {Thomsen, Klaus},
journal = {Mémoires de la Société Mathématique de France},
keywords = {subhomogeneous -algebras; building block; KK-theory; inductive limits; finite direct sums; Elliot invariant; unitary commutators; metrizable Choquet simplex; countable dimension group; countable abelian group; affine extreme-point preserving surjection; non-stable -theory},
language = {eng},
pages = {1-125},
publisher = {Société mathématique de France},
title = {Limits of certain subhomogeneous $C^*$-algebras},
url = {http://eudml.org/doc/94923},
volume = {71},
year = {1997},
}

TY - JOUR
AU - Thomsen, Klaus
TI - Limits of certain subhomogeneous $C^*$-algebras
JO - Mémoires de la Société Mathématique de France
PY - 1997
PB - Société mathématique de France
VL - 71
SP - 1
EP - 125
LA - eng
KW - subhomogeneous -algebras; building block; KK-theory; inductive limits; finite direct sums; Elliot invariant; unitary commutators; metrizable Choquet simplex; countable dimension group; countable abelian group; affine extreme-point preserving surjection; non-stable -theory
UR - http://eudml.org/doc/94923
ER -

References

top
  1. [BKR] B. Blackadar, A. Kumjian, M. Rørdam : Approximately central matrix units and the structure of noncommutative tori, K-theory 6 (1992), 267-284. Zbl0813.46064MR93i:46129
  2. [CE] M.-D. Choi, G. Elliott : Density of of the selfadjoint elements with finite spectrum in an irrational rotation C*-algebra, Math. Scand. 67 (1990), 73-86. Zbl0743.46070MR92a:46062
  3. [DL1] M. Dadarlat, T. Loring : K-homology, asymptotic representations and unsuspended E-theory, J. Func. Anal. 126 (1994), 367-383. Zbl0863.46045MR96d:46092
  4. [DL2] — Classifying C*-algebras via ordered, mod-p K-theory, Math. Ann. 305 (1996), 601-616. Zbl0857.46039MR97f:46110
  5. [DL3] — A universal multi-coefficient theorem for the Kasparov groups, Duke Math. J. 84 (1996), 355-377. Zbl0881.46048
  6. [EHS] E.G. Effros, D.E. Handelman, C.-L. Shen : Dimension groups and their affine representations, Amer. J. Math. 102 (1980), 385-407. Zbl0457.46047MR83g:46061
  7. [E1] G. Elliott : On the classification of C*-algebras of real rank zero, J. Reine Angew. Math. 443 (1993), 179-217. Zbl0809.46067MR94i:46074
  8. [E2] — A classification of certain simple C*-algebras, Quantum and Non-Commutative Analysis (editors, H. Araki et al.), Kluwer, Dordrecht, 1993, 373-385. MR95h:46089
  9. [E3] — A classification of certain simple C*-algebras, II, Preprint 
  10. [ER] G. Elliott, M. Rørdam : The automorphism Group of the irrational rotation C*-algebra, Comm. Math. Phys. 155 (1993), 3-26. Zbl0895.46029MR94j:46059
  11. [ET] G. Elliott, K. Thomsen : The state space of the Ko-group of a simple separable C*-algebra, Geom. and Func. Anal. 5 (1994), 522-538. Zbl0830.46063MR95m:46113
  12. [HR] E. Hewitt, K.A. Ross : Abstract harmonic analysis I, Springer Verlag, Berlin, Heidelberg, New York. Zbl0115.10603
  13. [K] T. Kato : Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966. Zbl0148.12601MR34 #3324
  14. [L1] T. Loring : C*-algebras generated by stable relations, J. Func. Anal. 112 (1993), 159-203. Zbl0778.46036MR94k:46115
  15. [L2] — Stable relations II : corona semiprojectivity and dimension-drop C*-algebras, Pacific J. Math. 172 (1996), 461-475. Zbl0854.46048MR97c:46070
  16. [N] V. Nistor : On the homotopy groups of the automorphism group of AF-C*-algebras, J. Operator Theory 19 (1988), 319-340. Zbl0674.46042MR90g:46089
  17. [NT] K. Egede Nielsen, K. Thomsen : Limits of circle algebras, Expo. Math. 14 (1996), 17-56. Zbl0865.46037MR97e:46097
  18. [Rf] M. A. Rieffel : The homotopy groups of non-commutative tori, J. Operator Theory 17 (1987), 237-254. Zbl0656.46056MR88f:22018
  19. [RS] J. Rosenberg, C. Schochet : The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor, Duke Math. J. 55 (1987), 431-474. Zbl0644.46051MR88i:46091
  20. [R1] M. Rørdam : A short proof of Elliott's theorem: A T T 2 ⊗ A T T 2 ≃ A T T 2, C.R. Math. Rep. Acad. Sci. Canada XVI (1994), 31-36. Zbl0817.46061MR95d:46064
  21. [R2] — Classification of certain infinite simple C*-algebras, J. Func. Anal. 131 (1995), 415-458. Zbl0831.46063MR96e:46080a
  22. [S] H. Su : On the classification of C*-algebras of real rank zero : Inductive limits of matrix algebras over non-Hausdorff graphs, Mem. Amer. Math. Soc. 114 (1995). Zbl0849.46040MR95m:46096
  23. [Th1] K. Thomsen : Nonstable K-theory for operator algebras, K-theory 4 (1991), 245-267. Zbl0744.46069MR92h:46102
  24. [Th2] — Inductive limits of interval algebras : The tracial state space, Amer. J. Math. 116 (1994), 605-620. Zbl0814.46050MR95f:46099
  25. [Th3] — Finite sums and products of commutators in inductive limit C*-algebras, Ann. Inst. Fourier, Grenoble 43 (1993), 225-249. Zbl0766.46043MR94g:46062
  26. [Th4] — Traces, unitary characters and crossed products by ℤ, Publ. RIMS, Kyoto 31 (1995), 1011-1029. Zbl0853.46073
  27. [Th5] — From trace states to states on the Ko-group, Bull. London Math. Soc. 28 (1996), 66-72. Zbl0837.46045
  28. [Th6] — On the ordered Ko-group of a simple C*-algebra, to appear in K-theory. 
  29. [Th7] — Diagonalization in inductive limits of circle algebras, J. Oper. Th. 27 (1992), 325-340. Zbl0824.46065MR95f:46098
  30. [Th8] — Inductive limits of interval algebras : The simple case, Quantum and Non-Commutative Analysis (editors, H. Araki et al.), Kluwer, Dordrecht, (1993), 399-404. Zbl0843.46041MR95h:46087
  31. [Th9] — Homomorphisms between finite direct sums of circle algebras, Lin. Mult. lin. Alg. 32 (1992), 33-50. Zbl0783.46029MR94a:46080
  32. [V1] J. Villadsen : The range of the Elliott invariant, J. Reine u. Angew. Math. 462 (1995), 31-55. Zbl0820.46068MR96e:46092
  33. [V2] — The range of the Elliott invariant of the simple AH-algebras with slow dimension growth, to appear in K-theory. Zbl0916.19003
  34. [Vi] I. Visoiu : Simple circle algebras, Masters Thesis, Copenhagen, 1994. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.