A classification of approximately finite real C*-algebras.
Page 1 Next
T. Giordano (1988)
Journal für die reine und angewandte Mathematik
Phillips, N.Christopher (2000)
Documenta Mathematica
Nicolae Anghel (1994)
Manuscripta mathematica
Kandelaki, Tamaz (2006)
Journal of Homotopy and Related Structures
Mikael Rordam, Peter Friis (1996)
Journal für die reine und angewandte Mathematik
Huaxin Lin (1995)
Mathematische Annalen
Huaxin Lin, N. Chr. Philips (1995)
Journal für die reine und angewandte Mathematik
Martin Markl (2013)
Pokroky matematiky, fyziky a astronomie
Michel Hilsum (2012)
Banach Center Publications
Given a smooth S¹-foliated bundle, A. Connes has shown the existence of an additive morphism ϕ from the K-theory group of the foliation C*-algebra to the scalar field, which factorizes, via the assembly map, the Godbillon-Vey class, which is the first secondary characteristic class, of the classifying space. We prove the invariance of this map under a bilipschitz homeomorphism, extending a previous result for maps of class C¹ by H. Natsume.
Kumjian, Alex, Pask, David, Sims, Aidan (2008)
Documenta Mathematica
Carla Farsi, Neil Watling (1994)
Mathematica Scandinavica
Yasuyuki Kawahigashi (1989)
Mathematica Scandinavica
Claire Anantharaman-Delaroche (1995/1996)
Séminaire Bourbaki
George A. Elliott, Mikael Rordam (1995)
Commentarii mathematici Helvetici
Marius Dadarlat, Terry A. Loring (1996)
Mathematische Annalen
Brodzki, Jacek, Plymen, Roger (2002)
Documenta Mathematica
Victor Nistor (1993)
Inventiones mathematicae
Daniel Kastler (1992)
Recherche Coopérative sur Programme n°25
Jean-Luc Brylinski (1987)
Annales de l'institut Fourier
In this article, we present two possible extensions of the classical theory of equivariant cohomology. The first, due to P. Baum, R. MacPherson and the author, is called the “delocalized theory". We attempt to present it in very concrete form for a circle action on a smooth manifold. The second is the cyclic homology of the crossed- product algebra of the algebra of smooth functions on a manifold, by the convolution algebra of smooth functions on a Lie group, when such Lie group act on the manifold....
Puschnigg, Michael (2003)
Documenta Mathematica
Page 1 Next