Isotropic random walks on affine buildings
- [1] University of Sydney School of Mathematics and Statistics F07 Sydney NSW 2006 (Australia)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 2, page 379-419
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topParkinson, James. "Isotropic random walks on affine buildings." Annales de l’institut Fourier 57.2 (2007): 379-419. <http://eudml.org/doc/10226>.
@article{Parkinson2007,
abstract = {In this paper we apply techniques of spherical harmonic analysis to prove a local limit theorem, a rate of escape theorem, and a central limit theorem for isotropic random walks on arbitrary thick regular affine buildings of irreducible type. This generalises results of Cartwright and Woess where $\tilde\{A\}_n$ buildings are studied, Lindlbauer and Voit where $\tilde\{A\}_2$ buildings are studied, and Sawyer where homogeneous trees are studied (these are $\tilde\{A\}_1$ buildings).},
affiliation = {University of Sydney School of Mathematics and Statistics F07 Sydney NSW 2006 (Australia)},
author = {Parkinson, James},
journal = {Annales de l’institut Fourier},
keywords = {Affine buildings; random walks; Macdonald spherical functions; affine buildings; MacDonald spherical functions},
language = {eng},
number = {2},
pages = {379-419},
publisher = {Association des Annales de l’institut Fourier},
title = {Isotropic random walks on affine buildings},
url = {http://eudml.org/doc/10226},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Parkinson, James
TI - Isotropic random walks on affine buildings
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 2
SP - 379
EP - 419
AB - In this paper we apply techniques of spherical harmonic analysis to prove a local limit theorem, a rate of escape theorem, and a central limit theorem for isotropic random walks on arbitrary thick regular affine buildings of irreducible type. This generalises results of Cartwright and Woess where $\tilde{A}_n$ buildings are studied, Lindlbauer and Voit where $\tilde{A}_2$ buildings are studied, and Sawyer where homogeneous trees are studied (these are $\tilde{A}_1$ buildings).
LA - eng
KW - Affine buildings; random walks; Macdonald spherical functions; affine buildings; MacDonald spherical functions
UR - http://eudml.org/doc/10226
ER -
References
top- Philippe Bougerol, Théorème central limite local sur certains groupes de Lie, Annales Scientifiques de L’É.N.S. 14 (1981), 403-432 Zbl0488.60013MR654204
- N. Bourbaki, Lie Groups and Lie Algebras, Chapters 4–6, (2002), Springer-Verlag, Berlin Heidelberg New York Zbl0983.17001MR1890629
- Kenneth Brown, Buildings, (1989), Springer-Verlag, New York Zbl0715.20017MR969123
- D. I. Cartwright, Spherical Harmonic Analysis on Buildings of Type , Monatsh. Math. 133 (2001), 93-109 Zbl1008.51019MR1860293
- D. I. Cartwright, W. Woess, Isotropic Random Walks in a Building of Type , Mathematische Zeitschrift 247 (2004), 101-135 Zbl1060.60070MR2054522
- Kenneth R. Davidson, -Algebras by Example, (1996), American Mathematical Society, Providence, Rhode Island, U.S.A. Zbl0958.46029MR1402012
- A. Figà-Talamanca, C. Nebbia, Harmonic analysis and representation theory for groups acting on homogeneous trees, 162 (1991), C.U.P., Cambridge Zbl1154.22301MR1152801
- J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, 9 (1978), Springer-Verlag, New York-Berlin Zbl0447.17001MR499562
- M. Lindlbauer, M. Voit, Limit Theorems for Isotropic Random Walks on Triangle Buildings, J. Aust. Math. Soc. 73 (2002), 301-333 Zbl1028.60005MR1936256
- I. G. Macdonald, Spherical Functions on a Group of -adic type, (1971), Ramanujan Institute, Centre for Advanced Study in Mathematics, University of Madras, Madras Zbl0302.43018MR435301
- I. G. Macdonald, The Poincaré Series of a Coxeter Group, Math. Ann. 199 (1972), 161-174 Zbl0286.20062MR322069
- I. G. Macdonald, Symmetric Functions and Hall Polynomials, (1995), Clarendon Press, Oxford Zbl0824.05059MR1354144
- I. G. Macdonald, Affine Hecke Algebras and Orthogonal Polynomials, 157 (2003), C.U.P., Cambridge Zbl1024.33001MR1976581
- J. Parkinson, Buildings and Hecke Algebras, (2005), Sydney University Zbl1095.20003MR2206366
- J. Parkinson, Buildings and Hecke Algebras, Journal of Algebra 297 (2006), 1-49 Zbl1095.20003MR2206366
- J. Parkinson, Spherical Harmonic Analysis on Affine Buildings, Mathematische Zeitschrift 253 (2006), 571-606 Zbl1171.43009MR2221087
- Mark Ronan, Lectures on Buildings, (1989), Academic Press Zbl0694.51001MR1005533
- Stanley Sawyer, Isotropic Random Walks in a Tree, Z. Wahrsch. Verw. Gebiete 42 (1978), 279-292 Zbl0362.60075MR491493
- Frank Spitzer, Principles of Random Walk (second edition), (1964), Springer-Verlag Zbl0119.34304MR388547
- Wolfgang Woess, Random Walks on Infinite Graphs and Groups, (2000), C.U.P. Zbl0951.60002
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.