Limit formulas for groups with one conjugacy class of Cartan subgroups

Mladen Božičević[1]

  • [1] University of Zagreb Department of Geotechnical Engineering Hallerova 7 42000 Varaždin (Croatia)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 4, page 1213-1232
  • ISSN: 0373-0956

Abstract

top
Limit formulas for the computation of the canonical measure on a nilpotent coadjoint orbit in terms of the canonical measures on regular semisimple coadjoint orbits arise naturally in the study of invariant eigendistributions on a reductive Lie algebra. In the present paper we consider a particular type of the limit formula for canonical measures which was proposed by Rossmann. The main technical tool in our analysis are the results of Schmid and Vilonen on the equivariant sheaves on the flag variety and their characteristic cycles. We combine the theory of Schmid and Vilonen, and the work of Rossmann to compute canonical measures on nilpotent orbits for the real semisimple Lie groups with one conjugacy class of Cartan subgroups.

How to cite

top

Božičević, Mladen. "Limit formulas for groups with one conjugacy class of Cartan subgroups." Annales de l’institut Fourier 58.4 (2008): 1213-1232. <http://eudml.org/doc/10347>.

@article{Božičević2008,
abstract = {Limit formulas for the computation of the canonical measure on a nilpotent coadjoint orbit in terms of the canonical measures on regular semisimple coadjoint orbits arise naturally in the study of invariant eigendistributions on a reductive Lie algebra. In the present paper we consider a particular type of the limit formula for canonical measures which was proposed by Rossmann. The main technical tool in our analysis are the results of Schmid and Vilonen on the equivariant sheaves on the flag variety and their characteristic cycles. We combine the theory of Schmid and Vilonen, and the work of Rossmann to compute canonical measures on nilpotent orbits for the real semisimple Lie groups with one conjugacy class of Cartan subgroups.},
affiliation = {University of Zagreb Department of Geotechnical Engineering Hallerova 7 42000 Varaždin (Croatia)},
author = {Božičević, Mladen},
journal = {Annales de l’institut Fourier},
keywords = {nilpotent orbit; Liouville measure; Weyl group; limit formula},
language = {eng},
number = {4},
pages = {1213-1232},
publisher = {Association des Annales de l’institut Fourier},
title = {Limit formulas for groups with one conjugacy class of Cartan subgroups},
url = {http://eudml.org/doc/10347},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Božičević, Mladen
TI - Limit formulas for groups with one conjugacy class of Cartan subgroups
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 4
SP - 1213
EP - 1232
AB - Limit formulas for the computation of the canonical measure on a nilpotent coadjoint orbit in terms of the canonical measures on regular semisimple coadjoint orbits arise naturally in the study of invariant eigendistributions on a reductive Lie algebra. In the present paper we consider a particular type of the limit formula for canonical measures which was proposed by Rossmann. The main technical tool in our analysis are the results of Schmid and Vilonen on the equivariant sheaves on the flag variety and their characteristic cycles. We combine the theory of Schmid and Vilonen, and the work of Rossmann to compute canonical measures on nilpotent orbits for the real semisimple Lie groups with one conjugacy class of Cartan subgroups.
LA - eng
KW - nilpotent orbit; Liouville measure; Weyl group; limit formula
UR - http://eudml.org/doc/10347
ER -

References

top
  1. D. Barbasch, D. Vogan, Primitive ideals and orbital integrals in complex classical groups, Math. Ann. 259 (1982), 153-199 Zbl0489.22010MR656661
  2. D. Barbasch, D. Vogan, Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra 80 (1983), 350-382 Zbl0513.22009MR691809
  3. J. Bernstein, V. Lunts, Equivariant Sheaves and Functors, (1994), Springer-Verlag Zbl0808.14038MR1299527
  4. A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compactes, Ann. of Math. 57 (1953), 115-207 Zbl0052.40001MR51508
  5. W. Borho, R. MacPhearson, Représentations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes, C. R. Acad. Sci. Paris 292 (1981), 707-710 Zbl0467.20036
  6. M. Božičević, Characteristic cycles of standard sheaves associated with open orbits Zbl1131.22012
  7. M. Božičević, Homology groups of conormal varieties Zbl1168.22016
  8. M. Božičević, A limit formula for elliptic orbital integrals, Duke Math. J. 113 (2002), 331-353 Zbl1010.22022MR1909221
  9. D. Collingwood, W. McGowern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York (1993) Zbl0972.17008
  10. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, (1978), Academic Press, New York Zbl0451.53038MR514561
  11. L. Hörmander, The Analysis of Linear Partial Differential Operators I, 256 (1983), Grundlehren Math. Wiss., Springer, Berlin Heidelberg Zbl0521.35001MR717035
  12. R. Hotta, M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra, Invent. Math. 75 (1984), 327-358 Zbl0538.22013MR732550
  13. M. Kashiwara, P. Schapira, Sheaves on Manifolds, 292 (1990), Grundlehren Math. Wiss., Springer, Berlin Zbl0709.18001MR1074006
  14. T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), 331-357 Zbl0396.53025MR527548
  15. W. Rossmann, Nilpotent orbital integrals in a real semisimple Lie algebra and representations of the Weyl groups, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989) 92 (1990), 263-287, Birkhäuser, Boston Zbl0744.22012MR1103593
  16. W. Rossmann, Invariant eigendistributions on a semisimple Lie algebra and homology classes on the conormal variety, I, II, J. Funct. Anal. 96 (1991), 130-154; 155-193 Zbl0755.22004
  17. W. Rossmann, Picard-Lefschetz theory for the coadjoint quotient of a semisimple Lie algebra, Invent. Math. 121 (1995), 531-578 Zbl0861.22008MR1353308
  18. W. Schmid, K. Vilonen, Characteristic cycles of constructible sheaves, Invent. Math. 124 (1996), 451-502 Zbl0851.32011MR1369425
  19. W. Schmid, K. Vilonen, Two geometric character formulas for reductive Lie groups, J. Amer. Math. Soc. 11 (1998), 799-867 Zbl0976.22010MR1612634
  20. W. Schmid, K. Vilonen, Characteristic cycles and wave front cycles of representations of reductive Lie groups, Ann. of Math. 151 (2001), 1071-1118 Zbl0960.22009MR1779564
  21. J. Sekiguchi, Remarks on nilpotent orbits of a symmetric pair, J. Math. Soc. Japan 39 (1987), 127-138 Zbl0627.22008MR867991
  22. T. Tanisaki, Holonomic systems on a flag variety associated to Harish-Chandra modules and representations of a Weyl group, Algebraic groups and related topics 6 (1985), 139-154, North-Holland Zbl0582.22011MR803333
  23. D. Vogan, Irreducible characters of semisimple Lie groups IV. Character-multiplicity duality, Duke Math. J. 49 (1982), 943-1073 Zbl0536.22022MR683010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.