Hyperbolic 4-manifolds and conformally flat 3-manifolds

Michael Gromov; H. B. Jr. Lawson; W. Thurston

Publications Mathématiques de l'IHÉS (1988)

  • Volume: 68, page 27-45
  • ISSN: 0073-8301

How to cite

top

Gromov, Michael, Lawson, H. B. Jr., and Thurston, W.. "Hyperbolic 4-manifolds and conformally flat 3-manifolds." Publications Mathématiques de l'IHÉS 68 (1988): 27-45. <http://eudml.org/doc/104042>.

@article{Gromov1988,
author = {Gromov, Michael, Lawson, H. B. Jr., Thurston, W.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {discrete subgroups of SO(4,1); plane bundles over an oriented closed surface; complete hyperbolic manifold structures; conformal structures; circle bundles},
language = {eng},
pages = {27-45},
publisher = {Institut des Hautes Études Scientifiques},
title = {Hyperbolic 4-manifolds and conformally flat 3-manifolds},
url = {http://eudml.org/doc/104042},
volume = {68},
year = {1988},
}

TY - JOUR
AU - Gromov, Michael
AU - Lawson, H. B. Jr.
AU - Thurston, W.
TI - Hyperbolic 4-manifolds and conformally flat 3-manifolds
JO - Publications Mathématiques de l'IHÉS
PY - 1988
PB - Institut des Hautes Études Scientifiques
VL - 68
SP - 27
EP - 45
LA - eng
KW - discrete subgroups of SO(4,1); plane bundles over an oriented closed surface; complete hyperbolic manifold structures; conformal structures; circle bundles
UR - http://eudml.org/doc/104042
ER -

References

top
  1. [A1] B. N. APANASOV, Kleinian groups, Teichmüller space and Mostow's Rigidity Theorem, Sibirisk. Mat. Zh., 21 (1980), n° 4, 3-15 (Siberian Math. J., 21 (1980), 483-491). Zbl0499.30032
  2. [A2] B. N. APANASOV, Diskretnye gruppy preobrazovaniĭ i struktury mnogoobraziĭ (Discrete groups of transformations and manifold structures), Akad. Nauk SSSR, Siberian Section, Novosibirsk, 1983. Zbl0535.57002
  3. [G1] W. M. GOLDMAN, Conformally flat manifolds with nilpotent holonomy and the uniformization problem for 3-manifolds, Trans. A.M.S., 278 (1983), 573-583. Zbl0518.53041MR84i:53043
  4. [G2] W. M. GOLDMAN, Projective structures with Fuchsian holonomy, J. Diff. Geom., 25 (1987), 297-326. Zbl0595.57012MR88i:57006
  5. [K1] Y. KAMISHIMA, Conformally flat manifolds whose developing maps are not surjective, I, Trans. A.M.S., 294 (1986), 607-623. Zbl0608.53036MR87g:57060
  6. [K2] W. M. GOLDMAN, Conformally flat manifolds whose developing maps are not surjective, II, to appear. 
  7. [Kap] M. KAPOVICH, Flat conformal structures on 3-manifolds, Preprint N17, Novosibirsk, 1987. 
  8. [Kui] N. H. KUIPER, Hyperbolic manifolds and tesselations, Publ. Math. I.H.E.S., 68 (1988), 47-76. Zbl0692.57013MR90k:57022
  9. [Ku] R. KULKARNI, The principle of uniformization, J. Diff. Geom., 13 (1978), 109-138. Zbl0381.53023MR81k:53009
  10. [KP] R. KULKARNI and U. PINKALL, Uniformization of geometric structures with applications to conformal geometry, in Diff. Geo. Peñiscola, Springer Lecture Notes in Math., 1209 (1986), 190-209. Zbl0612.57017MR88b:53036
  11. [M] B. MASKIT, Kleinian Groups, Grundlehrer der math Wiss., n° 287, Springer-Verlag, 1987. Zbl0627.30039MR90a:30132
  12. [Ma] W. S. MASSEY, Proof of a conjecture of Whitney, Pacific J. Math., 31 (1969), 143-156. Zbl0198.56701MR40 #3570
  13. [Th] W. THURSTON, Foliations of 3-manifolds which are circle bundles, Thesis, Univ. of Calif., Berkeley, Calif., 1972. 
  14. [W] J. WOOD, Bundles with totally disconnected structure group, Comment. Math. Helv., 46 (1971), 257-273. Zbl0217.49202MR45 #2732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.