Bifurcations and global stability of families of gradients

M. J. Dias Carneiro; Jacob Palis

Publications Mathématiques de l'IHÉS (1989)

  • Volume: 70, page 103-168
  • ISSN: 0073-8301

How to cite

top

Dias Carneiro, M. J., and Palis, Jacob. "Bifurcations and global stability of families of gradients." Publications Mathématiques de l'IHÉS 70 (1989): 103-168. <http://eudml.org/doc/104058>.

@article{DiasCarneiro1989,
author = {Dias Carneiro, M. J., Palis, Jacob},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {bifurcations; local and global stability; families of gradients},
language = {eng},
pages = {103-168},
publisher = {Institut des Hautes Études Scientifiques},
title = {Bifurcations and global stability of families of gradients},
url = {http://eudml.org/doc/104058},
volume = {70},
year = {1989},
}

TY - JOUR
AU - Dias Carneiro, M. J.
AU - Palis, Jacob
TI - Bifurcations and global stability of families of gradients
JO - Publications Mathématiques de l'IHÉS
PY - 1989
PB - Institut des Hautes Études Scientifiques
VL - 70
SP - 103
EP - 168
LA - eng
KW - bifurcations; local and global stability; families of gradients
UR - http://eudml.org/doc/104058
ER -

References

top
  1. [1] V. I. ARNOLD, S. M. GUSEIN-ZADE, A. N. VARCHENKO, Singularities of differentiable maps, vol. I, Birkhäuser, 1985. Zbl1297.32001MR86f:58018
  2. [2] T. BRÖKER, Differentiable germs and catastrophes, Cambridge University Press, 1975. Zbl0302.58006
  3. [3] J. GUCKENHEIMER, Bifurcations and catastrophes, Dynamical Systems, Acad. Press, 1973, 95-109. Zbl0287.58005MR49 #9878
  4. [4] B. A. KHESIN, Local bifurcations of gradient vector fields, Functional Analysis and Appl., 20, 3 (1986), 250-252. Zbl0625.58011MR88e:58070
  5. [5] N. H. KUIPER, C1-equivalence of functions near isolated critical points, in Symp. on Infinite Dim. Topology, Ann. of Math. Studies, 69, Princeton University Press, 1972, 199-218. Zbl0236.58001MR54 #1282
  6. [6] R. LABARCA, Stability of parametrized families of vector fields, in Dynamical Systems and Bifurcation Theory, Pitman Research Notes in Math. Series, 160 (1987), 121-214. Zbl0632.58026MR89k:58150
  7. [7] J. MARTINET, Singularities of smooth functions and maps, Lecture Notes Series, 58, London Math. Society, 1982. Zbl0522.58006MR83i:58018
  8. [8] J. MARTINET, Déploiements versels des applications différentiables et classification des applications stables, in Lecture Notes in Math., 535, Springer-Verlag, 1975, 1-44. Zbl0362.58004MR58 #31178
  9. [9] J. MATHER, Finitely determined maps germs, Publ. Math. I.H.E.S., 35 (1968), 127-156. Zbl0159.25001
  10. [10] O. E. LANFORD III, Bifurcation of periodic solutions into invariant tori : the work of Ruelle and Takens, in Nonlinear Problems in the Physical Sciences and Biology, Lecture Notes in Math., 322, Springer-Verlag, 1973, 159-192. Zbl0272.34039
  11. [11] S. NEWHOUSE, J. PALIS and F. TAKENS, Stable families of diffeomorphisms, Publ. Math. I.H.E.S., 57 (1983), 5-71. Zbl0518.58031MR84g:58080
  12. [12] R. PALAIS, Local triviality of the restriction map for embeddings, Comm. Math. Helvet., 34 (1962), 305-312. Zbl0207.22501MR23 #A666
  13. [13] R. PALAIS, Morse theory on Hilbert manifolds, Topology, 2 (1963), 299-340. Zbl0122.10702MR28 #1633
  14. [14] J. PALIS, On Morse-Smale dynamical systems, Topology, 8 (1969), 385-405. Zbl0189.23902MR39 #7620
  15. [15] J. PALIS and F. TAKENS, Stability of parametrized families of gradient vector fields, Annals of Math., 118 (1983), 383-421. Zbl0533.58018MR85i:58093
  16. [16] J. PALIS and S. SMALE, Structural stability theorems, in Global Analysis Proceedings Symp. Pure Math., 14, A.M.S., 1970, 223-231. Zbl0214.50702MR42 #2505
  17. [17] S. STERNBERG, On the structure of local homeomorphisms of euclidean space II, Amer. Journal of Math., 80 (1958), 623-631. Zbl0083.31406MR20 #3336
  18. [18] F. TAKENS, Moduli of stability for gradients, in Singularities and Dynamical Systems, Mathematics Studies, 103, North-Holland, 1985, 69-80. Zbl0556.58019MR87d:58082a
  19. [19] F. TAKENS, Singularities of gradient vector fields and moduli, in Singularities and Dynamical Systems, Mathematics Studies, 103, North-Holland, 1985, 81-88. Zbl0614.58033MR87d:58082b
  20. [20] F. TAKENS, Partially hyperbolic fixed points, Topology, 10 (1971), 133-147. Zbl0214.22901MR46 #6399
  21. [21] R. THOM, Stabilité structurelle et morphogenèse, Benjamin, 1972. Zbl0294.92001MR58 #7722a
  22. [22] G. VEGTER, Bifurcations of gradient vector fields, Ph. D. Thesis, Groningen, 1983. Zbl0526.58034
  23. [23] G. VEGTER, Global stability of generic two-parameter families of gradients on three manifolds, in Dynamical Systems and Bifurcations, Lecture Notes in Math., 1125, Springer-Verlag, 1985, 107-129. Zbl0563.58018MR86j:58120
  24. [24] G. VEGTER, The Cp-preparation theorem, Cp-unfoldings and applications, Report ZW-8013, Groningen, 1981. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.