Singular strange attractors on the boundary of Morse-Smale systems
Annales scientifiques de l'École Normale Supérieure (1997)
- Volume: 30, Issue: 6, page 693-717
- ISSN: 0012-9593
Access Full Article
topHow to cite
topMorales, C. A., and Pujals, E. R.. "Singular strange attractors on the boundary of Morse-Smale systems." Annales scientifiques de l'École Normale Supérieure 30.6 (1997): 693-717. <http://eudml.org/doc/82447>.
@article{Morales1997,
author = {Morales, C. A., Pujals, E. R.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Morse-Smale systems; singular strange attractors},
language = {eng},
number = {6},
pages = {693-717},
publisher = {Elsevier},
title = {Singular strange attractors on the boundary of Morse-Smale systems},
url = {http://eudml.org/doc/82447},
volume = {30},
year = {1997},
}
TY - JOUR
AU - Morales, C. A.
AU - Pujals, E. R.
TI - Singular strange attractors on the boundary of Morse-Smale systems
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1997
PB - Elsevier
VL - 30
IS - 6
SP - 693
EP - 717
LA - eng
KW - Morse-Smale systems; singular strange attractors
UR - http://eudml.org/doc/82447
ER -
References
top- [ACL] V. AFRAIMOVICH, S. N. CHOW and W. LIU, Lorenz type Attractors from Codimension One Bifurcation (J. of Dy. and Diff. Eq., Vol. 7 (2), 1995, pp. 375-407). Zbl0839.34064MR96c:58097
- [AP] V. AFRAIMOVICH and Ya B. PESIN, The Dimension of Lorenz Type Attractors, Gordon and Breach : Harwood Academic (Sov. Math. Phys. Rev., Vol. 6, 1987). Zbl0628.58031MR89m:58129
- [AS] V. S. AFRAIMOVICH and L. P. SHILNIKOV, On attainable Transition from Morse-Smale systems to systems with many periodic motions (Math, U.S.S.R. Izv., Vol. 8, 1974, pp. 1235-1270). Zbl0322.58007
- [BLMP] R. BAMÓN, R. LABARCA, R. MAÑ;E and M. J. PACÍFICOThe explosion of Singular Cycles (Publ. Math. IHES, Vol. 78, 1993, pp. 207-232). Zbl0801.58010MR94m:58152
- [CP] M. D. CARNEIRO and J. PALIS, Bifurcations and global stability of families of gradients, Publ. Math. IHES, Vol. 70, 1990, pp. 103-168. Zbl0706.58042MR91f:58048
- [DKO] F. DUMORTIER, H., KOKUBU and H. OKA, A degenerate singularity generating geometric Lorenz attractors (Ergod. Th. and Dynam. Sys. Vol. 15, 1995, pp. 833-856.) Zbl0836.58030MR96g:58156
- [DRV] L. DIAZ, J. ROCHA and M. VIANA, Saddle node cycles and prevalence of strange attractors (Invent. Math. 125, 1996, pp. 37-74.) Zbl0865.58034MR97h:58109
- [GS] P. GLENDINNING and C. SPARROW, Prime and renormalisable kneading invariants and the dynamic of expanding Lorenz map (Physica D 62, 1993, pp. 22-50.) Zbl0783.58046MR94c:58055
- [GW] J. GUCKENHEIMER and R. F. WILLIAMS, Structural Stability of Lorenz Attractor (Publ. Math. IHES, Vol. 50, 1979, pp. 59-72.) Zbl0436.58018MR82b:58055a
- [HPS] M. HIRSCH, C. C. PUGH and M. SHUB, Invariant Manifolds (Lec. Not. in Math., 583.) Zbl0355.58009MR58 #18595
- [LV] S. LUZATTO and M. VIANA, Lorenz-like attractors (preprint to appear.)
- [Mi] M. MISIUREWICZ, Rotation intervals for a class of maps of the real line into itself, (Ergod. Th. and Dynam. Sys., Vol. 6, 1986, pp. 117-132). Zbl0615.54030MR87k:58131
- [M] C. A. MORALES, Lorenz Attractor through Saddle-Node bifurcations (Ann. Inst. Henri Poincaré (An. nonlin.), VoL. 13, 1996, pp. 589-617). Zbl0871.58061MR97f:58084
- [MV] L. MORA and M. VIANA, Abundance of Strange Attractors (Acta Math., Vol. 171, 1993, pp. 1-71). Zbl0815.58016MR94k:58089
- [NPT] S. NEWHOUSE, J. PALIS and F. TAKENS, Bifurcations and Stability of families of Diffeomorphism (Publ. Math. IHES, Vol. 57, 1983, pp. 5-57). Zbl0518.58031MR84g:58080
- [PR] M. J. PACÍFICO and A. ROVELLA, Unfolding Contracting Singular Cycles (Ann. Scient. Ec. Norm. Sup. Pisa 4e serie 26, 1993, pp. 691-700). Zbl0802.58036MR94j:58133
- [PRV] M. J. PACÍFICO, A. ROVELLA and M. VIANA, Persistense of Global Spiraling Attractor, in preparation
- [PT1] J. PALIS and F. TAKENS, Hyperbolicity and sensitive chaotic dynamic at homoclinic bifurcation (Cambridge University Press, Vol. 35). Zbl0790.58014MR94h:58129
- [PT2] J. PALIS and F. TAKENS, Stability of parametrized families of gradient vector fields (Ann. of Math., Vol. 118, 1993, pp. 383-421). Zbl0533.58018MR85i:58093
- [P] Ya B. PESIN, Dynamical systems with generalized hyperbolic attractors : hyperbolic, ergodic and topological properties (Ergod. Th. and Dynam. Sys., Vol. 12, 1992, pp. 123-151). Zbl0774.58029MR93b:58095
- [Pu] E. R. PUJALS (Thesis IMPA to appear).
- [R] A. ROVELLA, A Dinamica das Perturbacoes do Attractor de Lorenz Contrativo (Thesis IMPA serie F-053-Junho/92).
- [ST] L. P. SHILNIKOV and D. TURAEV, On blue sky catastrophes (To appear in Math. Sov. Dok.)
- [T] F. TAKENS., Partially hyperbolic fixed points (Topology Vol. 10, 1971, pp. 133-147.) Zbl0214.22901MR46 #6399
- [W] R. F. WILLIAMS, The structure of Lorenz attractors (Publ. Math. IHES, Vol. 50, 1979, pp. 101-152.) Zbl0484.58021MR82b:58055b
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.