Complete intersection dimension

Luchezar L. Avramov; Vesselin N. Gasharov; Irena V. Peeva

Publications Mathématiques de l'IHÉS (1997)

  • Volume: 86, page 67-114
  • ISSN: 0073-8301

How to cite

top

Avramov, Luchezar L., Gasharov, Vesselin N., and Peeva, Irena V.. "Complete intersection dimension." Publications Mathématiques de l'IHÉS 86 (1997): 67-114. <http://eudml.org/doc/104126>.

@article{Avramov1997,
author = {Avramov, Luchezar L., Gasharov, Vesselin N., Peeva, Irena V.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {minimal free resolution; Betti numbers; complexity; complete intersection dimension; projective dimension; depth; Tate resolution},
language = {eng},
pages = {67-114},
publisher = {Institut des Hautes Études Scientifiques},
title = {Complete intersection dimension},
url = {http://eudml.org/doc/104126},
volume = {86},
year = {1997},
}

TY - JOUR
AU - Avramov, Luchezar L.
AU - Gasharov, Vesselin N.
AU - Peeva, Irena V.
TI - Complete intersection dimension
JO - Publications Mathématiques de l'IHÉS
PY - 1997
PB - Institut des Hautes Études Scientifiques
VL - 86
SP - 67
EP - 114
LA - eng
KW - minimal free resolution; Betti numbers; complexity; complete intersection dimension; projective dimension; depth; Tate resolution
UR - http://eudml.org/doc/104126
ER -

References

top
  1. [1] J. ALPERIN, L. EVENS, Representations, resolutions, and Quillen's dimension theorem, J. Pure Appl. Algebra 22 (1981), 1-9. Zbl0469.20008MR82j:20020
  2. [2] D. ANICK, A counterexample to a conjecture of Serre, Ann. of Math. 115 (1982), 1-33. Zbl0454.55004MR86i:55011a
  3. [3] M. ANDRÉ, Hopf algebras with divided powers, J. Algebra 18 (1971), 19-50. Zbl0217.07102MR43 #3323
  4. [4] E. F. ASSMUS, Jr., On the homology of local rings, Ill. J. Math. 3 (1959), 187-199. Zbl0085.02401MR21 #2670
  5. [5] M. AUSLANDER, M. BRIDGER, Stable module theory, Mem. Amer. Math. Soc. 94 (1969). Zbl0204.36402MR42 #4580
  6. [6] L. L. AVRAMOV, Obstructions to the existence of multiplicative structures on minimal free resolutions, Amer. J. Math. 103 (1981), 1-31. Zbl0447.13006MR82m:13011
  7. [7] L. L. AVRAMOV, Local algebra and rational homotopy, Homotopie algébrique et algèbre locale (J.-M. LEMAIRE, J.-C. THOMAS, eds.), Astérisque, vol. 113-114, Soc. Math. France, Paris, 1984, p. 15-43. Zbl0552.13003
  8. [8] L. L. AVRAMOV, Modules of finite virtual projective dimension, Invent. math. 96 (1989), 71-101. Zbl0677.13004MR90g:13027
  9. [9] L. L. AVRAMOV, Homological asymptotics of modules over local rings, Commutative algebra (M. HOCHSTER, C. HUNEKE, J. SALLY, eds.), MSRI Publ., vol. 15, Springer, New York, 1989, p. 33-62. Zbl0788.18010MR90i:13014
  10. [10] L. L. AVRAMOV, Local rings over which all modules have rational Poincaré series, J. Pure Appl. Algebra 91 (1994), 29-48. Zbl0794.13010MR94m:13019
  11. [11] L. L. AVRAMOV, A. R. KUSTIN, M. MILLER, Poincaré series of modules over local rings of small embedding codepth or small linking number, J. Algebra 118 (1988), 162-204. Zbl0648.13008MR89k:13013
  12. [12] L. L. AVRAMOV, L.-C. SUN, Cohomology operators defined by a deformation, J. Algebra, to appear. Zbl0915.13009
  13. [13] D. J. BENSON, J. F. CARLSON, Projective resolutions and Poincaré duality complexes, Trans. Amer. Math. Soc. 342 (1994), 447-488. Zbl0816.20044MR94f:20100
  14. [14] N. BOURBAKI, Algèbre. III, Nouvelle édition, Paris, Hermann, 1970. 
  15. [15] N. BOURBAKI, Algèbre commutative. IX, Paris, Masson, 1983. 
  16. [16] R.-O. BUCHWEITZ, G.-M. GREUEL, F. SCHREYER, Cohen-Macaulay modules on hypersurface singularities. II, Invent. math. 88 (1987), 165-182. Zbl0617.14034MR88d:14005
  17. [17] J. A. EAGON, M. HOCHSTER, R-sequences and indeterminates, Quart. J. Math. Oxford Ser. (2) 25 (1974), 61-71. Zbl0278.13008MR49 #2703
  18. [18] D. EISENBUD, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), 35-64. Zbl0444.13006MR82d:13013
  19. [19] D. EISENBUD, S. GOTO, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), 89-133. Zbl0531.13015MR85f:13023
  20. [20] Y. FÉLIX, S. HALPERIN, C. JACOBSSON, C. LÖFWALL, J.-C. THOMAS, The radical of the homotopy Lie algebra, Amer. J. Math., 110 (1988), 301-322. Zbl0654.55011MR89d:55029
  21. [21] V. N. GASHAROV, I. V. PEEVA, Boundedness versus periodicity over commutative local rings, Trans. Amer. Math. Soc. 320 (1990), 569-580. Zbl0706.13020MR90k:13011
  22. [22] A. GROTHENDIECK, Éléments de géométrie algébrique. IV2, Publ. Math. IHES 24 (1965). Zbl0135.39701
  23. [23] T. H. GULLIKSEN, A change of rings theorem, with applications to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167-183. Zbl0292.13009MR51 #487
  24. [24] T. H. GULLIKSEN, On the deviations of a local ring, Math. Scand. 47 (1980), 5-20. Zbl0458.13010MR82c:13022
  25. [25] J. HERZOG, B. ULRICH, J. BACKELIN, Linear maximal Cohen-Macaulay modules over strict complete intersections, J. Pure Appl. Algebra 71 (1991), 187-202. Zbl0734.13007MR92g:13011
  26. [26] A. R. KUSTIN, S. M. PALMER, The Poincaré series of every finitely generated module over a codimension 4 almost complete intersection is a rational function, J. Pure Appl. Algebra 95 (1994), 271-295. Zbl0812.13011MR95h:13016
  27. [27] S. MACLANE, Homology, Grundlehren Math. Wiss., vol. 114, Springer, Berlin, 1963. Zbl0133.26502MR28 #122
  28. [28] Yu. I. MANIN, Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier (Grenoble) 37 (1987), 191-205. Zbl0625.58040MR89e:16022
  29. [29] H. MATSUMURA, Commutative ring theory, Stud. Adv. Math., vol. 8, Cambridge, Univ. Press, 1986. Zbl0603.13001MR88h:13001
  30. [30] V. B. MEHTA, Endomorphisms of complexes and modules over Golod rings, Ph. D. Thesis, Univ. of California, Berkeley, 1976. 
  31. [31] J. W. MILNOR, J. C. MOORE, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264. Zbl0163.28202MR30 #4259
  32. [32] M. NAGATA, Local rings, New York, Wiley, 1962. Zbl0123.03402MR27 #5790
  33. [33] J. SHAMASH, The Poincaré series of a local rings, J. Algebra 12 (1969), 453-470. Zbl0189.04004MR39 #2751
  34. [34] G. SJÖDIN, Hopf algebras and derivations, J. Algebra 64 (1980), 218-229. Zbl0429.16008MR84a:16016
  35. [35] L.-C. SUN, Growth of Betti numbers over local rings of small embedding codepth or small linking number, J. Pure Appl. Algebra 96 (1994), 57-71. Zbl0836.13008MR95j:13014
  36. [36] J. TATE, Homology of Noetherian rings and of local rings, Ill. J. Math. 1 (1957), 14-27. Zbl0079.05501MR19,119b

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.