Decomposition numbers for perverse sheaves

Daniel Juteau[1]

  • [1] Mathematical Sciences Research Institute 17 Gauss Way Berkeley, CA 94720 (USA)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 3, page 1177-1229
  • ISSN: 0373-0956

Abstract

top
The purpose of this article is to set foundations for decomposition numbers of perverse sheaves, to give some methods to calculate them in simple cases, and to compute them concretely in two situations: for a simple (Kleinian) surface singularity, and for the closure of the minimal non-trivial nilpotent orbit in a simple Lie algebra.This work has applications to modular representation theory, for Weyl groups using the nilpotent cone of the corresponding semisimple Lie algebra, and for reductive algebraic group schemes using the affine Grassmannian of the Langlands dual group.

How to cite

top

Juteau, Daniel. "Decomposition numbers for perverse sheaves." Annales de l’institut Fourier 59.3 (2009): 1177-1229. <http://eudml.org/doc/10420>.

@article{Juteau2009,
abstract = {The purpose of this article is to set foundations for decomposition numbers of perverse sheaves, to give some methods to calculate them in simple cases, and to compute them concretely in two situations: for a simple (Kleinian) surface singularity, and for the closure of the minimal non-trivial nilpotent orbit in a simple Lie algebra.This work has applications to modular representation theory, for Weyl groups using the nilpotent cone of the corresponding semisimple Lie algebra, and for reductive algebraic group schemes using the affine Grassmannian of the Langlands dual group.},
affiliation = {Mathematical Sciences Research Institute 17 Gauss Way Berkeley, CA 94720 (USA)},
author = {Juteau, Daniel},
journal = {Annales de l’institut Fourier},
keywords = {Perverse sheaves; intersection cohomology; integral cohomology; t-structures; torsion theories; decomposition matrices; simple singularities; minimal nilpotent orbits; perverse sheaves; -structures},
language = {eng},
number = {3},
pages = {1177-1229},
publisher = {Association des Annales de l’institut Fourier},
title = {Decomposition numbers for perverse sheaves},
url = {http://eudml.org/doc/10420},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Juteau, Daniel
TI - Decomposition numbers for perverse sheaves
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 3
SP - 1177
EP - 1229
AB - The purpose of this article is to set foundations for decomposition numbers of perverse sheaves, to give some methods to calculate them in simple cases, and to compute them concretely in two situations: for a simple (Kleinian) surface singularity, and for the closure of the minimal non-trivial nilpotent orbit in a simple Lie algebra.This work has applications to modular representation theory, for Weyl groups using the nilpotent cone of the corresponding semisimple Lie algebra, and for reductive algebraic group schemes using the affine Grassmannian of the Langlands dual group.
LA - eng
KW - Perverse sheaves; intersection cohomology; integral cohomology; t-structures; torsion theories; decomposition matrices; simple singularities; minimal nilpotent orbits; perverse sheaves; -structures
UR - http://eudml.org/doc/10420
ER -

References

top
  1. Alexander A. Beĭlinson, Joseph Bernstein, Pierre Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) 100 (1982), 5-171, Soc. Math. France, Paris MR751966
  2. Walter Borho, Robert MacPherson, Représentations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 707-710 Zbl0467.20036MR618892
  3. Walter Borho, Robert MacPherson, Partial resolutions of nilpotent varieties, Analysis and topology on singular spaces, II, III (Luminy, 1981) 101 (1983), 23-74, Soc. Math. France, Paris Zbl0576.14046MR737927
  4. Nicolas Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, (1968), Hermann, Paris Zbl0186.33001MR240238
  5. Egbert Brieskorn, Singular elements of semi-simple algebraic groups, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2 (1971), 279-284, Gauthier-Villars, Paris Zbl0223.22012MR437798
  6. Pierre Deligne, La conjecture de Weil II, Publ. Math. IHES 52 (1980), 137-252 Zbl0456.14014MR601520
  7. Mark Goresky, Robert MacPherson, Intersection homology theory, Topology 19 (1980), 135-162 Zbl0448.55004MR572580
  8. Mark Goresky, Robert MacPherson, Intersection homology. II, Invent. Math. 72 (1983), 77-129 Zbl0529.55007MR696691
  9. Dieter Happel, Idun Reiten, Sverre O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996) Zbl0849.16011MR1327209
  10. Y. Ito, I. Nakamura, Hilbert schemes and simple singularities, New trends in algebraic geometry (Warwick, 1996) 264 (1999), 151-233, Cambridge Univ. Press, Cambridge Zbl0954.14001MR1714824
  11. Daniel Juteau, Modular Springer correspondence and decomposition matrices Zbl1187.14022
  12. Daniel Juteau, Modular Springer correspondence and decomposition matrices, (2007) 
  13. Daniel Juteau, Cohomology of the minimal nilpotent orbit, Transformation Groups 13 (2008), 355-387 Zbl1152.22007MR2426135
  14. Masaki Kashiwara, Pierre Schapira, Categories and sheaves, 332 (2006), Springer-Verlag, Berlin Zbl1118.18001MR2182076
  15. David Kazhdan, George Lusztig, Schubert varieties and Poincaré duality, Proc. Symposia in Pure Math. 36 (1980), 185-203 Zbl0461.14015MR573434
  16. Emmanuel Letellier, Fourier transforms of invariant functions on finite reductive Lie algebras, 1859 (2005), Springer, Berlin Zbl1076.43001MR2114404
  17. George Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), 205-272 Zbl0547.20032MR732546
  18. Anton Malkin, Viktor Ostrik, Maxim Vybornov, The minimal degeneration singularities in the affine Grassmannians, Duke Math. J. 126 (2005), 233-249 Zbl1078.14016MR2115258
  19. I. Mirković, K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), 95-143 Zbl1138.22013MR2342692
  20. Peter Slodowy, Four lectures on simple groups and singularities, 11 (1980), Rijksuniversiteit Utrecht Mathematical Institute, Utrecht Zbl0425.22020MR563725
  21. Peter Slodowy, Simple singularities and simple algebraic groups, 815 (1980), Springer, Berlin Zbl0441.14002MR584445
  22. Tonny A. Springer, Linear algebraic groups, 9 (1998), Birkhäuser Boston Inc., Boston, MA Zbl0927.20024MR1642713
  23. Weiqiang Wang, Dimension of a minimal nilpotent orbit, Proc. Amer. Math. Soc. 127 (1999), 935-936 Zbl0909.22009MR1610801
  24. Charles A. Weibel, An introduction to homological algebra, 38 (1994), Cambridge University Press, Cambridge Zbl0797.18001MR1269324

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.