Decomposition numbers for perverse sheaves
- [1] Mathematical Sciences Research Institute 17 Gauss Way Berkeley, CA 94720 (USA)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 3, page 1177-1229
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topJuteau, Daniel. "Decomposition numbers for perverse sheaves." Annales de l’institut Fourier 59.3 (2009): 1177-1229. <http://eudml.org/doc/10420>.
@article{Juteau2009,
abstract = {The purpose of this article is to set foundations for decomposition numbers of perverse sheaves, to give some methods to calculate them in simple cases, and to compute them concretely in two situations: for a simple (Kleinian) surface singularity, and for the closure of the minimal non-trivial nilpotent orbit in a simple Lie algebra.This work has applications to modular representation theory, for Weyl groups using the nilpotent cone of the corresponding semisimple Lie algebra, and for reductive algebraic group schemes using the affine Grassmannian of the Langlands dual group.},
affiliation = {Mathematical Sciences Research Institute 17 Gauss Way Berkeley, CA 94720 (USA)},
author = {Juteau, Daniel},
journal = {Annales de l’institut Fourier},
keywords = {Perverse sheaves; intersection cohomology; integral cohomology; t-structures; torsion theories; decomposition matrices; simple singularities; minimal nilpotent orbits; perverse sheaves; -structures},
language = {eng},
number = {3},
pages = {1177-1229},
publisher = {Association des Annales de l’institut Fourier},
title = {Decomposition numbers for perverse sheaves},
url = {http://eudml.org/doc/10420},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Juteau, Daniel
TI - Decomposition numbers for perverse sheaves
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 3
SP - 1177
EP - 1229
AB - The purpose of this article is to set foundations for decomposition numbers of perverse sheaves, to give some methods to calculate them in simple cases, and to compute them concretely in two situations: for a simple (Kleinian) surface singularity, and for the closure of the minimal non-trivial nilpotent orbit in a simple Lie algebra.This work has applications to modular representation theory, for Weyl groups using the nilpotent cone of the corresponding semisimple Lie algebra, and for reductive algebraic group schemes using the affine Grassmannian of the Langlands dual group.
LA - eng
KW - Perverse sheaves; intersection cohomology; integral cohomology; t-structures; torsion theories; decomposition matrices; simple singularities; minimal nilpotent orbits; perverse sheaves; -structures
UR - http://eudml.org/doc/10420
ER -
References
top- Alexander A. Beĭlinson, Joseph Bernstein, Pierre Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) 100 (1982), 5-171, Soc. Math. France, Paris MR751966
- Walter Borho, Robert MacPherson, Représentations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 707-710 Zbl0467.20036MR618892
- Walter Borho, Robert MacPherson, Partial resolutions of nilpotent varieties, Analysis and topology on singular spaces, II, III (Luminy, 1981) 101 (1983), 23-74, Soc. Math. France, Paris Zbl0576.14046MR737927
- Nicolas Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, (1968), Hermann, Paris Zbl0186.33001MR240238
- Egbert Brieskorn, Singular elements of semi-simple algebraic groups, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2 (1971), 279-284, Gauthier-Villars, Paris Zbl0223.22012MR437798
- Pierre Deligne, La conjecture de Weil II, Publ. Math. IHES 52 (1980), 137-252 Zbl0456.14014MR601520
- Mark Goresky, Robert MacPherson, Intersection homology theory, Topology 19 (1980), 135-162 Zbl0448.55004MR572580
- Mark Goresky, Robert MacPherson, Intersection homology. II, Invent. Math. 72 (1983), 77-129 Zbl0529.55007MR696691
- Dieter Happel, Idun Reiten, Sverre O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996) Zbl0849.16011MR1327209
- Y. Ito, I. Nakamura, Hilbert schemes and simple singularities, New trends in algebraic geometry (Warwick, 1996) 264 (1999), 151-233, Cambridge Univ. Press, Cambridge Zbl0954.14001MR1714824
- Daniel Juteau, Modular Springer correspondence and decomposition matrices Zbl1187.14022
- Daniel Juteau, Modular Springer correspondence and decomposition matrices, (2007)
- Daniel Juteau, Cohomology of the minimal nilpotent orbit, Transformation Groups 13 (2008), 355-387 Zbl1152.22007MR2426135
- Masaki Kashiwara, Pierre Schapira, Categories and sheaves, 332 (2006), Springer-Verlag, Berlin Zbl1118.18001MR2182076
- David Kazhdan, George Lusztig, Schubert varieties and Poincaré duality, Proc. Symposia in Pure Math. 36 (1980), 185-203 Zbl0461.14015MR573434
- Emmanuel Letellier, Fourier transforms of invariant functions on finite reductive Lie algebras, 1859 (2005), Springer, Berlin Zbl1076.43001MR2114404
- George Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), 205-272 Zbl0547.20032MR732546
- Anton Malkin, Viktor Ostrik, Maxim Vybornov, The minimal degeneration singularities in the affine Grassmannians, Duke Math. J. 126 (2005), 233-249 Zbl1078.14016MR2115258
- I. Mirković, K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), 95-143 Zbl1138.22013MR2342692
- Peter Slodowy, Four lectures on simple groups and singularities, 11 (1980), Rijksuniversiteit Utrecht Mathematical Institute, Utrecht Zbl0425.22020MR563725
- Peter Slodowy, Simple singularities and simple algebraic groups, 815 (1980), Springer, Berlin Zbl0441.14002MR584445
- Tonny A. Springer, Linear algebraic groups, 9 (1998), Birkhäuser Boston Inc., Boston, MA Zbl0927.20024MR1642713
- Weiqiang Wang, Dimension of a minimal nilpotent orbit, Proc. Amer. Math. Soc. 127 (1999), 935-936 Zbl0909.22009MR1610801
- Charles A. Weibel, An introduction to homological algebra, 38 (1994), Cambridge University Press, Cambridge Zbl0797.18001MR1269324
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.