Maps and fields with compressible density
Rendiconti del Seminario Matematico della Università di Padova (2004)
- Volume: 111, page 133-159
- ISSN: 0041-8994
Access Full Article
topHow to cite
topOtway, Thomas H.. "Maps and fields with compressible density." Rendiconti del Seminario Matematico della Università di Padova 111 (2004): 133-159. <http://eudml.org/doc/108624>.
@article{Otway2004,
author = {Otway, Thomas H.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {133-159},
publisher = {Seminario Matematico of the University of Padua},
title = {Maps and fields with compressible density},
url = {http://eudml.org/doc/108624},
volume = {111},
year = {2004},
}
TY - JOUR
AU - Otway, Thomas H.
TI - Maps and fields with compressible density
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2004
PB - Seminario Matematico of the University of Padua
VL - 111
SP - 133
EP - 159
LA - eng
UR - http://eudml.org/doc/108624
ER -
References
top- [A] M. ARA, Geometry of F-harmonic maps, Kodai Math. J., 22 (1999), pp. 243-263. Zbl0941.58010MR1700595
- [Ba] H. BATEMAN, Notes on a differential equation which occurs in the twodimensional motion of a compressible fluid and the associated variational problem, Proc. R. Soc. London Ser. A, 125 (1929), pp. 598-618. Zbl56.1057.01JFM56.1057.01
- [Be] L. BERS, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New York, 1958. Zbl0083.20501MR96477
- [Ch] C. J. CHAPMAN, High SpeedFlow, Cambridge University Press, Cambridge, 2000. Zbl0948.76001MR1753394
- [CF] G-Q. CHEN - M. FELDMAN, Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type, preprint. Zbl1015.35075MR1969202
- [CL] D. COSTA - G. LIAO, On removability of a singular submanifold for weakly harmonic maps, J. Fac. Sci. Univ. Tokyo Sect. 1A Math., 35 (1988), pp. 321-344. Zbl0662.58013MR945880
- [D] E. DIBENEDETTO, C11a local regularity of weak solutions of degenerate elliptic equations, Nonlinear Analysis T. M. A., 7, No. 8 (1983), pp. 827-850. Zbl0539.35027MR709038
- [DO] G. DONG - B. OU, Subsonic flows around a body in space, Commun. Partial Differential Equations, 18 (1993), pp. 355-379. Zbl0813.35013MR1211737
- [Ed] D. G. B. EDELEN, Applied Exterior Calculus, Wiley, New York, 1985. Zbl1101.58301MR816136
- [EL] J. EELLS - L. LEMAIRE, Some properties of exponentially harmonic maps, Proc. Banach Center, Semester on PDE, 27 (1990), pp. 127-136. Zbl0799.58021
- [EP] J. EELS - J. C. POLKING, Removable singularities of harmonic maps, Indiana Univ. Math. J., 33, No. 6 (1984), pp. 859-871. Zbl0559.58011MR763946
- [Ev] L. C. EVANS, A new proof of local C11a regularity for solutions of certain degenerate elliptic P.D.E., J. Differential Equations, 45 (1982), pp. 356-373. Zbl0508.35036MR672713
- [F] M. FUCHS, Topics in the Calculus of Variations, Vieweg, Wiesbaden, 1994. Zbl0834.49019MR1320049
- [FH] N. FUSCO - J. HUTCHINSON, Partial regularity for minimisers of certain functionals having nonquadratic growth, Ann. Mat. Pura Appl. 155 (1989), pp. 1-24. Zbl0698.49001MR1042826
- [G] M. GIAQUINTA, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Theory, Princeton University Press, Princeton, 1983. Zbl0516.49003MR717034
- [GT] D. GILBARG - N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
- [HL] R. HARDT - F.-H. LIN, Mappings minimizing the Lp norm of the gradient, Commun. Pure Appl. Math., 40 (1987), pp. 555-588. Zbl0646.49007MR896767
- [HJW] S. HILDEBRANDT - J. JOST - K.-O. WIDMAN, Harmonic mappings and minimal surfaces, Inventiones Math., 62 (1980), pp. 269-298. Zbl0446.58006MR595589
- [ISS] T. IWANIEC - C. SCOTT - B. STROFFOLINI, Nonlinear Hodge theory on manifolds with boundary, Annali Mat. Pura Appl. (4), 177 (1999), pp. 37-115. Zbl0963.58003MR1747627
- [J] J. JOST, Riemannian Geometry and Geometric Analysis, SpringerVerlag, Berlin, 1995. Zbl0828.53002MR1351009
- [KFL] A. D. KANFON - A. FÜZFA - D. LAMBERT, Some examples of exponentially harmonic maps, arXiv:math-ph/0205021. Zbl1045.58009MR1945767
- [LU] O. A. LADYZHENSKAYA - N. N. URAL’TSEVA, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. Zbl0164.13002MR244627
- [Le] J. L. LEWIS, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J., 32 (1983), pp. 849-858. Zbl0554.35048MR721568
- [Li] G. LIAO, A regularity theorem for harmonic maps with small energy, J. Differential Geometry, 22 (1985), pp. 233-241. Zbl0619.58015MR834278
- [LM] E. LOUBEAU - S. MONTALDO, A note on exponentially harmonic morphisms, Glasgow Math. J., 42 (2000), pp. 25-29. Zbl0946.58016MR1739695
- [Me] M. MEIER, Removable singularities of harmonic maps and an application to minimal submanifolds, Indiana Univ. Math. J., 35, No. 4 (1986), pp. 705-726. Zbl0618.58017MR865424
- [MTW] C. W. MISNER - K. S. THORNE - J. A. WHEELER, Gravitation, Freeman, New York, 1973. MR418833
- [Mo] C. B. MORREY, Jr., Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, 1966. Zbl0142.38701MR202511
- [O1] T. H. OTWAY, Nonlinear Hodge maps, J. Math. Phys., 41, No. 8 (2000), pp. 5745-5766. A slightly revised version of this paper is posted at arXiv:math-ph/9908030. Zbl0974.58018MR1773064
- [O2] T. H. OTWAY, Uniformly and nonuniformly elliptic variational equations with gauge invariance, arXiv:math-ph/0007028.
- [SaU] J. SACKS - K. UHLENBECK, The existence of minimal immersions of 2-spheres, Ann. of Math. (2), 113 (1981), pp. 1-24. Zbl0462.58014MR604040
- [Sch] R. SCHOEN, Analytic aspects of the harmonic map problem, in: S. S. Chern, ed., Seminar on Nonlinear Partial Differential Equations, Springer-Verlag, New York, 1985, pp. 321-358. Zbl0551.58011MR765241
- [ScU] R. SCHOEN - K. UHLENBECK, A regularity theory for harmonic maps, J. Diff. Geom., 17 (1982), pp. 307-335. Zbl0521.58021MR664498
- [Sed] V. I. SEDOV, Introduction to the Mechanics of a Continuous Medium, Addison-Wesley, Reading, 1965. Zbl0123.40502
- [Se] J. SERRIN, Local behavior of solutions of quasilinear equations, Acta Math., 111 (1964), pp. 247-302. Zbl0128.09101MR170096
- [Sh] M. SHIFFMAN, On the existence of subsonic flows of a compressible fluid, J. Rat. Mech. Anal., 1 (1952), pp. 605-652. Zbl0048.19301MR51651
- [Si] L. M. SIBNER, An existence theorem for a nonregular variational problem, Manuscripta Math., 43 (1983), pp. 45-72. Zbl0534.58022MR706801
- [SS1] L. M. SIBNER - R. J. SIBNER, A nonlinear Hodge-de Rham theorem, Acta Math., 125 (1970), pp. 57-73. Zbl0216.45703MR281231
- [SS2] L. M. SIBNER - R. J. SIBNER, Nonlinear Hodge theory: Applications, Advances in Math., 31 (1979), pp. 1-15. Zbl0408.58032MR521463
- [SS3] L. M. SIBNER - R. J. SIBNER, A sub-elliptic estimate for a class of invariantly defined elliptic systems, Pacific J. Math., 94, No. 2 (1982), pp. 417-421. Zbl0474.35022MR628593
- [Sm] P. D. SMITH, Nonlinear Hodge theory on punctured Riemannian manifolds, Indiana Univ. Math. J., 31, No. 4 (1982), pp. 553-577. Zbl0513.58005MR662917
- [So] C. F. SOPUERTA, Applications of timelike and null congruences to the construction of cosmological models, Ph.D. Thesis, Universitat de Barcelona, 1996.
- [T] G. E. TANYI, On the critical points of the classical elastic energy functional, Afrika Matematika, 1 (1978), pp. 35-43. Zbl0513.73007MR566406
- [U] K. K. UHLENBECK, Regularity for a class of nonlinear elliptic systems, Acta Math., 138 (1977), pp. 219-240. Zbl0372.35030MR474389
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.