Sur l'équation de Hill analytique
Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985)
- page 1-12
Access Full Article
topHow to cite
topGrigis, A.. "Sur l'équation de Hill analytique." Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985): 1-12. <http://eudml.org/doc/111868>.
@article{Grigis1984-1985,
author = {Grigis, A.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Schrödinger equation; Hill equation; periodic potential; Floquet problem; interval of instability; Mathieu differential equation},
language = {fre},
pages = {1-12},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Sur l'équation de Hill analytique},
url = {http://eudml.org/doc/111868},
year = {1984-1985},
}
TY - JOUR
AU - Grigis, A.
TI - Sur l'équation de Hill analytique
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1984-1985
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 12
LA - fre
KW - Schrödinger equation; Hill equation; periodic potential; Floquet problem; interval of instability; Mathieu differential equation
UR - http://eudml.org/doc/111868
ER -
References
top- [1] J. Avron, B. Simon: The asymptotics of the Gap in the Mathieu equation, Annals of Physics134, (1981) 76-84. Zbl0464.34020MR626698
- [2] E.A. Coddington, N. Levinson: Theory of ordinary differential equations, Mac Graw Hill (1955). Zbl0064.33002MR69338
- [3] M.S.P. Eastham: The spectral theory of periodic differential equation, Scottish Academic Press (1973). Zbl0287.34016
- [4] J. Ecalle: Cinq applications des fonctions resurgentes, Prepublications d'Orsay (1984).
- [5] M.A. Evgrafov, M.V. Fedoryuk: Asymptotic behaviour as λ → ∞ of the solutions of the equation W(z) - p(z,λ)W(z) = 0 in the complex z-plane, Russian Math. Surveys21 (1966) 1-48. Zbl0173.33801
- [6] J. Garnett, E. Trubowitz: Gaps and bands of one dimensional periodic Schrödinger operators, Comment. Math. Helvetici59 (1984) 258-312. Zbl0554.34013MR749109
- [7] A. Grigis: Sur l'isospectralité des potentiels périodiques dans IRn (d'après G. Eskin, J. Ralston, E. Trubowitz) Séminaire d'Analyse de l'Université de Nantes (1983-84) exposé n°1 .
- [8] E. Harrel: American J. of Maths, to appear.
- [9] H.P. MacKean, E. Trubowitz: Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, CPAM29 (1976) 143-226. Zbl0339.34024MR427731
- [10] W. Magnus, S. Winkler: Hill's equation, Interscience Publishers (1966). Zbl0158.09604
- [11] M. Reed, B. Simon: Methods of Modern Mathematical physics, IV, Academic Press (1978). Zbl0401.47001MR751959
- [12] Y. Sibuya: Global theory of a second order linear ordinary differential equation with a polynomial coefficient, North Holland (1975). Zbl0322.34006MR486867
- [13] E. Trubowitz: The inverse problem for periodic potentials, CPAM30 (1977) 321-337. Zbl0403.34022MR430403
- [14] A. Voros: The return of the quartic oscillator. The complex WKB method, Ann. Inst. Henri Poincaré, vol. 29, n°3 (1983) 211-338. Zbl0526.34046MR729194
- [15] W. Wasow: Asymptotic expansions for ordinary differential equations, Krieger (1976). Zbl0169.10903MR460820
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.