Sur l'équation de Hill analytique

A. Grigis

Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985)

  • page 1-12

How to cite

top

Grigis, A.. "Sur l'équation de Hill analytique." Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985): 1-12. <http://eudml.org/doc/111868>.

@article{Grigis1984-1985,
author = {Grigis, A.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Schrödinger equation; Hill equation; periodic potential; Floquet problem; interval of instability; Mathieu differential equation},
language = {fre},
pages = {1-12},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Sur l'équation de Hill analytique},
url = {http://eudml.org/doc/111868},
year = {1984-1985},
}

TY - JOUR
AU - Grigis, A.
TI - Sur l'équation de Hill analytique
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1984-1985
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 12
LA - fre
KW - Schrödinger equation; Hill equation; periodic potential; Floquet problem; interval of instability; Mathieu differential equation
UR - http://eudml.org/doc/111868
ER -

References

top
  1. [1] J. Avron, B. Simon: The asymptotics of the Gap in the Mathieu equation, Annals of Physics134, (1981) 76-84. Zbl0464.34020MR626698
  2. [2] E.A. Coddington, N. Levinson: Theory of ordinary differential equations, Mac Graw Hill (1955). Zbl0064.33002MR69338
  3. [3] M.S.P. Eastham: The spectral theory of periodic differential equation, Scottish Academic Press (1973). Zbl0287.34016
  4. [4] J. Ecalle: Cinq applications des fonctions resurgentes, Prepublications d'Orsay (1984). 
  5. [5] M.A. Evgrafov, M.V. Fedoryuk: Asymptotic behaviour as λ → ∞ of the solutions of the equation W(z) - p(z,λ)W(z) = 0 in the complex z-plane, Russian Math. Surveys21 (1966) 1-48. Zbl0173.33801
  6. [6] J. Garnett, E. Trubowitz: Gaps and bands of one dimensional periodic Schrödinger operators, Comment. Math. Helvetici59 (1984) 258-312. Zbl0554.34013MR749109
  7. [7] A. Grigis: Sur l'isospectralité des potentiels périodiques dans IRn (d'après G. Eskin, J. Ralston, E. Trubowitz) Séminaire d'Analyse de l'Université de Nantes (1983-84) exposé n°1 . 
  8. [8] E. Harrel: American J. of Maths, to appear. 
  9. [9] H.P. MacKean, E. Trubowitz: Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, CPAM29 (1976) 143-226. Zbl0339.34024MR427731
  10. [10] W. Magnus, S. Winkler: Hill's equation, Interscience Publishers (1966). Zbl0158.09604
  11. [11] M. Reed, B. Simon: Methods of Modern Mathematical physics, IV, Academic Press (1978). Zbl0401.47001MR751959
  12. [12] Y. Sibuya: Global theory of a second order linear ordinary differential equation with a polynomial coefficient, North Holland (1975). Zbl0322.34006MR486867
  13. [13] E. Trubowitz: The inverse problem for periodic potentials, CPAM30 (1977) 321-337. Zbl0403.34022MR430403
  14. [14] A. Voros: The return of the quartic oscillator. The complex WKB method, Ann. Inst. Henri Poincaré, vol. 29, n°3 (1983) 211-338. Zbl0526.34046MR729194
  15. [15] W. Wasow: Asymptotic expansions for ordinary differential equations, Krieger (1976). Zbl0169.10903MR460820

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.