Un processus qui ressemble au pont brownien

Philippe Biane; Jean-François Le Gall; Marc Yor

Séminaire de probabilités de Strasbourg (1987)

  • Volume: 21, page 270-275

How to cite

top

Biane, Philippe, Le Gall, Jean-François, and Yor, Marc. "Un processus qui ressemble au pont brownien." Séminaire de probabilités de Strasbourg 21 (1987): 270-275. <http://eudml.org/doc/113598>.

@article{Biane1987,
author = {Biane, Philippe, Le Gall, Jean-François, Yor, Marc},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Brownian bridge; Brownian motion; local time},
language = {fre},
pages = {270-275},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Un processus qui ressemble au pont brownien},
url = {http://eudml.org/doc/113598},
volume = {21},
year = {1987},
}

TY - JOUR
AU - Biane, Philippe
AU - Le Gall, Jean-François
AU - Yor, Marc
TI - Un processus qui ressemble au pont brownien
JO - Séminaire de probabilités de Strasbourg
PY - 1987
PB - Springer - Lecture Notes in Mathematics
VL - 21
SP - 270
EP - 275
LA - fre
KW - Brownian bridge; Brownian motion; local time
UR - http://eudml.org/doc/113598
ER -

References

top
  1. [1] Ph. Biane, M. Yor : Valeurs principales associées aux temps locaux browniens. Bull. Sciences Mathématiques, 1987. Zbl0619.60072MR886959
  2. [2] K.L. Chung : Excursions in Brownian motion. Ark. für Math.14, 155-177 (1976). Zbl0356.60033MR467948
  3. [3] R.K. Getoor : The Brownian escape process. Annals of Proba, 7, 864-867 (1979). Zbl0416.60086MR542136
  4. [4] Th. Jeulin : Semi-martingales et grossissement d'une filtration. Lect. Notes in Maths.833. Springer (1980). Zbl0444.60002MR604176
  5. [5] Th. Jeulin, M. Yor (eds) : Grossissement de filtrations : exemples et applications. Lect. Notes in Maths.1118. Springer (1985). Zbl0576.60038MR884713
  6. [6] J.W. Pitman, M. Yor : Bessel processes and infinitely divisible laws. In : "Stochastic Integrals", ed. D. Williams, Lect. Notes in Maths.851. Springer (1981). Zbl0469.60076MR620995
  7. [7] D. Williams : Path decomposition and continuity of local times for one-dimensional diffusions. Proc. London Math. Soc.(3) 28, 738-768 (1974). Zbl0326.60093MR350881

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.