The Azéma martingales as components of quantum independent increment processes

Michael Schürmann

Séminaire de probabilités de Strasbourg (1991)

  • Volume: 25, page 24-30

How to cite

top

Schürmann, Michael. "The Azéma martingales as components of quantum independent increment processes." Séminaire de probabilités de Strasbourg 25 (1991): 24-30. <http://eudml.org/doc/113760>.

@article{Schürmann1991,
author = {Schürmann, Michael},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {non-commutative stochastic processes; Hopf algebras; quantum stochastic calculus},
language = {fre},
pages = {24-30},
publisher = {Springer - Lecture Notes in Mathematics},
title = {The Azéma martingales as components of quantum independent increment processes},
url = {http://eudml.org/doc/113760},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Schürmann, Michael
TI - The Azéma martingales as components of quantum independent increment processes
JO - Séminaire de probabilités de Strasbourg
PY - 1991
PB - Springer - Lecture Notes in Mathematics
VL - 25
SP - 24
EP - 30
LA - fre
KW - non-commutative stochastic processes; Hopf algebras; quantum stochastic calculus
UR - http://eudml.org/doc/113760
ER -

References

top
  1. [1] Accardi, L., Frigerio, A., Lewis, J.T.: Quantum stochastic processes. Publ. RIMS, Kyoto Univ.18, 97-133 (1982) Zbl0498.60099MR660823
  2. [2] Accardi, L., Schürmann, M., Waldenfels, W. v. : Quantum independent increment processes on superalgebras. Math. Z.198, 451-477 (1988) Zbl0627.60014MR950578
  3. [3] Azéma, J.: Sur les fermes aleatoires. In: Azema, J., Yor, M. (eds.) Sem. Prob.XIX. (Lect. Notes Math., vol. 1123). BerlinHeidelbergNew York: Springer1985 Zbl0563.60038MR889496
  4. [4] Glockner, P.: *-Bialgebren in der Quantenstochastik. Dissertation, Heidelberg1989 Zbl0688.60005
  5. [5] Glockner, P., Waldenfels, W. v. : The relations of the non-commutative coefficient algebra of the unitary group. SFB-Preprint Nr. 460, Heidelberg1988 
  6. [6] Guichardet, A.: Symmetric Hilbert spaces and related topics. (Lect. Notes Math. vol. 261). BerlinHeidelbergNew York : Springer1972 Zbl0265.43008MR493402
  7. [7] Parthasarathy, K.R.: Azema martingales and quantum stochastic calculus. Preprint 1989 
  8. [8] Parthasarathy, K.R., Schmidt, K.: Positive definite kernels, continuous tensor products, and central limit theorems of probability theory. (Lect. Notes Math. vol. 272). BerlinHeidelbergNew York : Springer1972 Zbl0237.43005MR622034
  9. [9] Schürmann, M.: Noncommutative stochastic processes with independent and stationary increments satisfy quantum stochastic differential equations. To appear in Probab. Th. Rel. Fields Zbl0668.60058MR1042061
  10. [10] Schürmann, M.: A class of representations of involutive bialgebras. To appear in Math. Proc. Cambridge Philos. Soc. Zbl0704.46040MR1021880
  11. [11] Schürmann, M.: Quantum stochastic processes with independent additive increments. Preprint, Heidelberg1989 MR1128934
  12. [12] Sweedler, M.E.: Hopf algebras. New York : Benjamin1969 Zbl0194.32901MR252485

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.