The Azéma martingales as components of quantum independent increment processes
Séminaire de probabilités de Strasbourg (1991)
- Volume: 25, page 24-30
Access Full Article
topHow to cite
topSchürmann, Michael. "The Azéma martingales as components of quantum independent increment processes." Séminaire de probabilités de Strasbourg 25 (1991): 24-30. <http://eudml.org/doc/113760>.
@article{Schürmann1991,
author = {Schürmann, Michael},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {non-commutative stochastic processes; Hopf algebras; quantum stochastic calculus},
language = {fre},
pages = {24-30},
publisher = {Springer - Lecture Notes in Mathematics},
title = {The Azéma martingales as components of quantum independent increment processes},
url = {http://eudml.org/doc/113760},
volume = {25},
year = {1991},
}
TY - JOUR
AU - Schürmann, Michael
TI - The Azéma martingales as components of quantum independent increment processes
JO - Séminaire de probabilités de Strasbourg
PY - 1991
PB - Springer - Lecture Notes in Mathematics
VL - 25
SP - 24
EP - 30
LA - fre
KW - non-commutative stochastic processes; Hopf algebras; quantum stochastic calculus
UR - http://eudml.org/doc/113760
ER -
References
top- [1] Accardi, L., Frigerio, A., Lewis, J.T.: Quantum stochastic processes. Publ. RIMS, Kyoto Univ.18, 97-133 (1982) Zbl0498.60099MR660823
- [2] Accardi, L., Schürmann, M., Waldenfels, W. v. : Quantum independent increment processes on superalgebras. Math. Z.198, 451-477 (1988) Zbl0627.60014MR950578
- [3] Azéma, J.: Sur les fermes aleatoires. In: Azema, J., Yor, M. (eds.) Sem. Prob.XIX. (Lect. Notes Math., vol. 1123). BerlinHeidelbergNew York: Springer1985 Zbl0563.60038MR889496
- [4] Glockner, P.: *-Bialgebren in der Quantenstochastik. Dissertation, Heidelberg1989 Zbl0688.60005
- [5] Glockner, P., Waldenfels, W. v. : The relations of the non-commutative coefficient algebra of the unitary group. SFB-Preprint Nr. 460, Heidelberg1988
- [6] Guichardet, A.: Symmetric Hilbert spaces and related topics. (Lect. Notes Math. vol. 261). BerlinHeidelbergNew York : Springer1972 Zbl0265.43008MR493402
- [7] Parthasarathy, K.R.: Azema martingales and quantum stochastic calculus. Preprint 1989
- [8] Parthasarathy, K.R., Schmidt, K.: Positive definite kernels, continuous tensor products, and central limit theorems of probability theory. (Lect. Notes Math. vol. 272). BerlinHeidelbergNew York : Springer1972 Zbl0237.43005MR622034
- [9] Schürmann, M.: Noncommutative stochastic processes with independent and stationary increments satisfy quantum stochastic differential equations. To appear in Probab. Th. Rel. Fields Zbl0668.60058MR1042061
- [10] Schürmann, M.: A class of representations of involutive bialgebras. To appear in Math. Proc. Cambridge Philos. Soc. Zbl0704.46040MR1021880
- [11] Schürmann, M.: Quantum stochastic processes with independent additive increments. Preprint, Heidelberg1989 MR1128934
- [12] Sweedler, M.E.: Hopf algebras. New York : Benjamin1969 Zbl0194.32901MR252485
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.