The brownian burglar : conditioning brownian motion by its local time process

Jonathan Warren; Marc Yor

Séminaire de probabilités de Strasbourg (1998)

  • Volume: 32, page 328-342

How to cite

top

Warren, Jonathan, and Yor, Marc. "The brownian burglar : conditioning brownian motion by its local time process." Séminaire de probabilités de Strasbourg 32 (1998): 328-342. <http://eudml.org/doc/113994>.

@article{Warren1998,
author = {Warren, Jonathan, Yor, Marc},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Brownian motion; Brownian burglar},
language = {eng},
pages = {328-342},
publisher = {Springer - Lecture Notes in Mathematics},
title = {The brownian burglar : conditioning brownian motion by its local time process},
url = {http://eudml.org/doc/113994},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Warren, Jonathan
AU - Yor, Marc
TI - The brownian burglar : conditioning brownian motion by its local time process
JO - Séminaire de probabilités de Strasbourg
PY - 1998
PB - Springer - Lecture Notes in Mathematics
VL - 32
SP - 328
EP - 342
LA - eng
KW - Brownian motion; Brownian burglar
UR - http://eudml.org/doc/113994
ER -

References

top
  1. [1] D. Bakry. Remarques sur les semi-groupes de Jacobi. In Hommage à P.A. Meyer et J. Neveu. Asterisque236, pages 23-40. Soc. Math. France, 1996. Zbl0859.47026MR1417973
  2. [2] Ph. Biane, J.F. Le Gall , and M. Yor. Un processus qui ressemble au pont brownien. In Séminaire de Probabilités XXI, Lecture notes in Mathematics1247, pages 270-275. Springer, 1987. Zbl0621.60086MR941990
  3. [3] N. Bouleau and M. Yor. Sur la variation quadratique des temps locaux de certaines semimartingales. Comptes Rendus Acad. Sci., Paris, 292:491-494, 1981. Zbl0476.60046MR612544
  4. [4] I.P. Cornfeld, S.V. Fomin, and Ya.G. Sinai . Ergodic theory. Springer-Verlag, Berlin, 1982. Zbl0493.28007MR832433
  5. [5] D.A. Dawson. Measure-valued Markov processes. In Ecole d'Eté de Probabilitiés de Saint-Flour, 1991, Lecture Notes in Mathematics1541. Springer, Berlin, 1993. Zbl0799.60080MR1242575
  6. [6] F. Delbaen and H. Shirakawa. Interest rate model with upper and lower bounds. Preprint, 1996. Zbl1071.91020
  7. [7] A. Etheridge and P. March. A note on superprocesses. Probability Theory and Related Fields, 89:141-147, 1991. Zbl0722.60076MR1110534
  8. [8] S.N. Ethier and T.G. Kurtz. Markov processes: characterization and convergence. Wiley, New York, 1986. Zbl0592.60049MR838085
  9. [9] S. Karlin and H.M. Taylor. A second course in stochastic processes. Academic Press, New York, 1981. Zbl0469.60001MR611513
  10. [10] M. Kimura. Diffusion models in population genetics. Journal of Applied Probability, 1:177-232, 1964. Zbl0134.38103MR172727
  11. [11] O. Mazet. Classification des semigroupes de diffusion sur R associés à une famille de polynomes orthogonaux. In Séminaire de Probabilités XXXI, Lecture notes in Mathematics1655, pages 40-53. Springer, Berlin, 1997. Zbl0883.60072MR1478714
  12. [12] K.R. Parthasarathy. Introduction to probability and measure. Macmillan, London, 1977. Zbl0395.28001
  13. [13] J. Pitman and M. Yor. Sur une décomposition des ponts de Bessel. In Functional analysis in Markov processes, Lecture notes in Mathematics923, pages 276-285. Springer, Berlin, 1982. Zbl0499.60082MR661630
  14. [14] J. Pitman and M. Yor. Decomposition at the maximum for excursions and bridges of one-dimensional diffusions. In M. Fukushima, N. Ikeda, H. Kunita, and S. Watanabe, editors, Itô's stochastic calculus and probability theory, pages 293-310. Springer, 1996. Zbl0877.60053MR1439532
  15. [15] D. Revuz and M. Yor. Continuous martingales and Brownian motion. Springer, Berlin, 1991. Zbl0731.60002MR1083357
  16. [16] V.A. Rohlin. Selected topics in the metric theory of dynamical systems. American Mathematical Society Translations Series2, 49:171-240, 1966. Zbl0185.21802
  17. [17] A. Vershik and M. Yor. Multiplicativité du processus gamma et étude asymptotique des lois stables d'indice α, lorsque α tend vers 0. Technical Report 289, Laboratoire de Probabilités, Université Pierre et Marie Curie, Paris, 1995. 
  18. [18] J. Warren and M. Yor. Skew-products involving Bessel and Jacobi processes. Technical report, Statistics group, University of Bath, 1997. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.