Classification des semi-groupes de diffusion sur associés à une famille de polynômes orthogonaux
Séminaire de probabilités de Strasbourg (1997)
- Volume: 31, page 40-53
Access Full Article
topHow to cite
topMazet, Olivier. "Classification des semi-groupes de diffusion sur $\mathbb {R}$ associés à une famille de polynômes orthogonaux." Séminaire de probabilités de Strasbourg 31 (1997): 40-53. <http://eudml.org/doc/113971>.
@article{Mazet1997,
author = {Mazet, Olivier},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {diffusion processes; orthogonal polynomials; Markovian semigroup},
language = {eng},
pages = {40-53},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Classification des semi-groupes de diffusion sur $\mathbb \{R\}$ associés à une famille de polynômes orthogonaux},
url = {http://eudml.org/doc/113971},
volume = {31},
year = {1997},
}
TY - JOUR
AU - Mazet, Olivier
TI - Classification des semi-groupes de diffusion sur $\mathbb {R}$ associés à une famille de polynômes orthogonaux
JO - Séminaire de probabilités de Strasbourg
PY - 1997
PB - Springer - Lecture Notes in Mathematics
VL - 31
SP - 40
EP - 53
LA - eng
KW - diffusion processes; orthogonal polynomials; Markovian semigroup
UR - http://eudml.org/doc/113971
ER -
References
top- [1] L. Alili, D. Dufresne, and M. Yor. Sur l'identité de Bougerol pour les fonctionnelles exponentielles du mouvement Brownien avec drift. A paraître, 1996. Zbl0905.60059MR1648654
- [2] D. Bakry. La propriété de sous-harmonicité des diffusions dans les variétés. In Séminaire de probabilité XXII, Lectures Notes in Mathematics, volume 1321, pages 1-50. Springer-Verlag, 1988. Zbl0653.58043MR960507
- [3] D. Bakry. L'hypercontractivité et son utilisation en théorie des semi-groupes. In Lectures on Probability Theory, volume 1581. Springer-Verlag, 1994. Zbl0856.47026MR1307413
- [4] D. Bakry. Remarques sur les semi-groupes de Jacobi. In Hommage à P.A. Meyer et J. Neveu, volume 236, pages 23-40. Astérisque, 1996. Zbl0859.47026MR1417973
- [5] D. Bakry and M. Emery. Hypercontractivité de semi-groupes de diffusion. C.R.Acad.Paris, 299, Série I(15):775-778, 1984. Zbl0563.60068MR772092
- [6] S. Bochner. Sturm-Liouville and heat equations whose eigenfunctions are ultra-spherical polynomials or associated Bessel functions. Proc. Conf. Differential Equations, pages 23-48, 1955. Zbl0075.28002MR82021
- [7] W. Feller. The parabolic differential equations and the associated semi-groups of transformations. Ann. of Math., 55:468-519, 1952. Zbl0047.09303MR47886
- [8] W. Feller. Diffusion processes in one dimension. Trans. Amer. Math. Soc., 77:1-31, 1954. Zbl0059.11601MR63607
- [9] R. Gangolli. Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters. Ann. Inst. Henri Poincaré, III(2):9-226, 1967. Zbl0157.24902MR215331
- [10] G. Gasper. Banach algebras for Jacobi series and positivity of a kernel. Ann. of Math., 2(95):261-280, 1972. Zbl0236.33013MR310536
- [11] K. Ito and H.P. McKean. Diffusion processes and their sample paths, volume 125. Springer-Verlag, 1965. Zbl0127.09503
- [12] S. Karlin and J. McGregor. Classical diffusion processes and total positivity. Journal of mathematical analysis and applications, 1:163-183, 1960. Zbl0101.11102MR121844
- [13] H. Koornwinder. Jacobi functions and analysis on nomcompact semisimple Lie groups. In R.A. Askey et al. (eds.), editor, Special functions: group theoretical aspects and applications, pages 1-85. 1984. Zbl0584.43010MR774055
- [14] A. Korzeniowski and D. Stroock. An example in the theory of hypercontractive semigroups. Proc. A.M.S., 94:87-90, 1985. Zbl0577.47043MR781062
- [15] PA. Meyer. Note sur le processus d'Ornstein-Uhlenbeck. In Séminaire de probabilités XVI, volume 920, pages 95-133. Springer-Verlag, 1982. Zbl0481.60041MR658673
- [16] O.V. Sarmanov and Z.N. Bratoeva. Probabilistic properties of bilinear expansions of Hermite polynomials. Teor. Verujatnost. i Primenen, 12:470-481, 1967. Zbl0178.21205MR216541
- [17] T. Shiga and S. Watanabe. Bessel diffusions as a one-parameter family of diffusion processes. Z. Wahrscheinlichkeitstheorie verw. Geb., 27:37-46, 1973. Zbl0327.60047MR368192
- [18] E.M. Stein and G. Weiss. Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, 1971. Zbl0232.42007MR304972
- [19] D. Stroock. Probability Theory: an analytic view. Cambridge University Press, 1993. Zbl0925.60004MR1267569
- [20] G. Szegö. Orthogonal Polynomials. American Mathematical Society, 4th edition, 1975. Zbl0305.42011MR372517
- [21] H.C. Wang. Two-point homogeneous spaces. Annals of Mathematics, 55:177-191, 1952. Zbl0048.40503MR47345
- [22] E. Wong. The construction of a class of stationary Markov processes. Amer. Math. Soc., Proc. of the XVIth Symp. of App. Math., pages 264-276, 1964. Zbl0139.34406MR161375
- [23] K. Yosida. Functional Analysis. Springer-Verlag, 1968. Zbl0152.32102
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.