Classification des semi-groupes de diffusion sur associés à une famille de polynômes orthogonaux

Olivier Mazet

Séminaire de probabilités de Strasbourg (1997)

  • Volume: 31, page 40-53

How to cite


Mazet, Olivier. "Classification des semi-groupes de diffusion sur $\mathbb {R}$ associés à une famille de polynômes orthogonaux." Séminaire de probabilités de Strasbourg 31 (1997): 40-53. <>.

author = {Mazet, Olivier},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {diffusion processes; orthogonal polynomials; Markovian semigroup},
language = {eng},
pages = {40-53},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Classification des semi-groupes de diffusion sur $\mathbb \{R\}$ associés à une famille de polynômes orthogonaux},
url = {},
volume = {31},
year = {1997},

AU - Mazet, Olivier
TI - Classification des semi-groupes de diffusion sur $\mathbb {R}$ associés à une famille de polynômes orthogonaux
JO - Séminaire de probabilités de Strasbourg
PY - 1997
PB - Springer - Lecture Notes in Mathematics
VL - 31
SP - 40
EP - 53
LA - eng
KW - diffusion processes; orthogonal polynomials; Markovian semigroup
UR -
ER -


  1. [1] L. Alili, D. Dufresne, and M. Yor. Sur l'identité de Bougerol pour les fonctionnelles exponentielles du mouvement Brownien avec drift. A paraître, 1996. Zbl0905.60059MR1648654
  2. [2] D. Bakry. La propriété de sous-harmonicité des diffusions dans les variétés. In Séminaire de probabilité XXII, Lectures Notes in Mathematics, volume 1321, pages 1-50. Springer-Verlag, 1988. Zbl0653.58043MR960507
  3. [3] D. Bakry. L'hypercontractivité et son utilisation en théorie des semi-groupes. In Lectures on Probability Theory, volume 1581. Springer-Verlag, 1994. Zbl0856.47026MR1307413
  4. [4] D. Bakry. Remarques sur les semi-groupes de Jacobi. In Hommage à P.A. Meyer et J. Neveu, volume 236, pages 23-40. Astérisque, 1996. Zbl0859.47026MR1417973
  5. [5] D. Bakry and M. Emery. Hypercontractivité de semi-groupes de diffusion. C.R.Acad.Paris, 299, Série I(15):775-778, 1984. Zbl0563.60068MR772092
  6. [6] S. Bochner. Sturm-Liouville and heat equations whose eigenfunctions are ultra-spherical polynomials or associated Bessel functions. Proc. Conf. Differential Equations, pages 23-48, 1955. Zbl0075.28002MR82021
  7. [7] W. Feller. The parabolic differential equations and the associated semi-groups of transformations. Ann. of Math., 55:468-519, 1952. Zbl0047.09303MR47886
  8. [8] W. Feller. Diffusion processes in one dimension. Trans. Amer. Math. Soc., 77:1-31, 1954. Zbl0059.11601MR63607
  9. [9] R. Gangolli. Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters. Ann. Inst. Henri Poincaré, III(2):9-226, 1967. Zbl0157.24902MR215331
  10. [10] G. Gasper. Banach algebras for Jacobi series and positivity of a kernel. Ann. of Math., 2(95):261-280, 1972. Zbl0236.33013MR310536
  11. [11] K. Ito and H.P. McKean. Diffusion processes and their sample paths, volume 125. Springer-Verlag, 1965. Zbl0127.09503
  12. [12] S. Karlin and J. McGregor. Classical diffusion processes and total positivity. Journal of mathematical analysis and applications, 1:163-183, 1960. Zbl0101.11102MR121844
  13. [13] H. Koornwinder. Jacobi functions and analysis on nomcompact semisimple Lie groups. In R.A. Askey et al. (eds.), editor, Special functions: group theoretical aspects and applications, pages 1-85. 1984. Zbl0584.43010MR774055
  14. [14] A. Korzeniowski and D. Stroock. An example in the theory of hypercontractive semigroups. Proc. A.M.S., 94:87-90, 1985. Zbl0577.47043MR781062
  15. [15] PA. Meyer. Note sur le processus d'Ornstein-Uhlenbeck. In Séminaire de probabilités XVI, volume 920, pages 95-133. Springer-Verlag, 1982. Zbl0481.60041MR658673
  16. [16] O.V. Sarmanov and Z.N. Bratoeva. Probabilistic properties of bilinear expansions of Hermite polynomials. Teor. Verujatnost. i Primenen, 12:470-481, 1967. Zbl0178.21205MR216541
  17. [17] T. Shiga and S. Watanabe. Bessel diffusions as a one-parameter family of diffusion processes. Z. Wahrscheinlichkeitstheorie verw. Geb., 27:37-46, 1973. Zbl0327.60047MR368192
  18. [18] E.M. Stein and G. Weiss. Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, 1971. Zbl0232.42007MR304972
  19. [19] D. Stroock. Probability Theory: an analytic view. Cambridge University Press, 1993. Zbl0925.60004MR1267569
  20. [20] G. Szegö. Orthogonal Polynomials. American Mathematical Society, 4th edition, 1975. Zbl0305.42011MR372517
  21. [21] H.C. Wang. Two-point homogeneous spaces. Annals of Mathematics, 55:177-191, 1952. Zbl0048.40503MR47345
  22. [22] E. Wong. The construction of a class of stationary Markov processes. Amer. Math. Soc., Proc. of the XVIth Symp. of App. Math., pages 264-276, 1964. Zbl0139.34406MR161375
  23. [23] K. Yosida. Functional Analysis. Springer-Verlag, 1968. Zbl0152.32102

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.