Sur les multi-applications mesurables
- Volume: 1, Issue: 1, page 91-126
- ISSN: 0764-583X
Access Full Article
topHow to cite
topCastaing, Ch.. "Sur les multi-applications mesurables." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 1.1 (1967): 91-126. <http://eudml.org/doc/193079>.
@article{Castaing1967,
author = {Castaing, Ch.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {differentiation and integration, measure theory},
language = {fre},
number = {1},
pages = {91-126},
publisher = {Dunod},
title = {Sur les multi-applications mesurables},
url = {http://eudml.org/doc/193079},
volume = {1},
year = {1967},
}
TY - JOUR
AU - Castaing, Ch.
TI - Sur les multi-applications mesurables
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1967
PB - Dunod
VL - 1
IS - 1
SP - 91
EP - 126
LA - fre
KW - differentiation and integration, measure theory
UR - http://eudml.org/doc/193079
ER -
References
top- [1] R. J. AUMANN, Integrals of set valued functions (Journal of Mathematica and applications, p. 1-12, 1965). Zbl0163.06301MR185073
- [2] C. BERGE, Espaces topologiques (Functions multivoques, Dunod). Zbl0164.52902
- [3] N. BOURBAKI, Topologie générale (Livre III, chap. 9).
- [4] N. BOURBAKI, Intégration (Livre XIII, chap. 4).
- [5] Ch. CASTAING, Comptes rendus (t. 262, p. 409-411, 1966). Zbl0136.34303
- [6] Ch. CASTAING, Comptes rendus (t. 263, p. 63-66, 1966). Zbl0143.31102
- [7] G. DEBREU, « Integration of correspondences» (multigraphié). (University of California, 1965.)
- [7] bis] G. DEBREU, « Integration of correspondances», Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, 1966). Zbl0211.52803
- [8] A. F. FILIPPOV, On certain questions in the theory of optimal control (Ves nik Moskov, Série Math., p. 25-32, 1959). Zbl0090.06902MR122650
- [9] A. GROTHENDIECK, Espaces vectoriels topologiques Cours de Sao-Paulo}. Zbl0058.33401MR77884
- [10] L. HORMANDER, Sur la fonction d'appui des ensembles convexes dans un espace localement convexe Arkiv för Matematik, p. 181-186, 1954). Zbl0064.10504MR68112
- [11] S. KARLIN, On extreme point of vector functions (Proc. Amer. Math. Soc., vol. 4, p. 603-610, 1953). Zbl0051.29604MR56668
- [12] A. LASOTA et Z. OPIAL, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations (Bull. Acad. Pol. Sc. Série Math., vol. XIII n° 11-12, 1965). Zbl0151.10703MR196178
- [13] V. NEUMANN ( Annals of Math 50, 1949).
- [14] C. OLECH, A note concerning set valued measurable function (Bull. Acad. Pol. Sc., Série Math., vol. XIII, p. 317-321, 1965). Zbl0145.28302MR199338
- [15] A. PLIS, Remark on measurable set valued functions (Bull. Ac. Pol. Sc., vol. IX, n° 12, p. 857-859, 1961). Zbl0101.04303MR132145
- [16] J. PAOLI, L'équilibre concurrentiel retrouvé (Rech. Opér. n° 40, 1966). Zbl0149.38301
- [17] L. M. SONNEBORN et F. S. VAN VLECK, The Bang-Bang principle (S. Siam control, vol. 2, n° 2, p. 152-159, 1964). Zbl0196.46702
- [18] T. WAZEWSKI, Sur une condition d'existence des fonctions implicites mesurables (Bull. Acad. Pol. Sc., vol. 9, n° 12, 1964). Zbl0101.04302
Citations in EuDML Documents
top- Marco Biroli, Sur un'équation d'évolution multivoque et non monotone dans un espace de Hilbert
- Jerzy Motyl, Joachim Syga, Properties of set-valued stochastic integrals
- Adam Kowalewski, Time-optimal control of infinite order hyperbolic systems with time delays
- Philippe Michel, Commandes généralisées à valeurs dans un espace compact théorèmes d'existence
- C. J. Himmelberg, Precompact contraction of metric uniformities, and the continuity of
- Charles Castaing, Michel Valadier, Équations différentielles multivoques dans les espaces vectoriels localement convexes
- Tullio Zolezzi, Teoremi d'esistenza per problemi di controllo ottimo retti da equazioni ellittiche o paraboliche
- Bernard Van Cutsem, Martingales de convexes fermés aléatoires en dimension finie
- Charles J. Himmelberg, F. S. Van Vleck, An extension of Brunovský's Scorza-Dragoni type theorem for unbounded set-valued functions
- C. Delode, O. Arino, J.-P. Penot, Champs mesurables et multisections
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.