Iterative refinement of finite element approximations for elliptic problems

Lin Qun

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1982)

  • Volume: 16, Issue: 1, page 39-47
  • ISSN: 0764-583X

How to cite

top

Qun, Lin. "Iterative refinement of finite element approximations for elliptic problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 16.1 (1982): 39-47. <http://eudml.org/doc/193389>.

@article{Qun1982,
author = {Qun, Lin},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite elements; iterative improvement},
language = {eng},
number = {1},
pages = {39-47},
publisher = {Dunod},
title = {Iterative refinement of finite element approximations for elliptic problems},
url = {http://eudml.org/doc/193389},
volume = {16},
year = {1982},
}

TY - JOUR
AU - Qun, Lin
TI - Iterative refinement of finite element approximations for elliptic problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1982
PB - Dunod
VL - 16
IS - 1
SP - 39
EP - 47
LA - eng
KW - finite elements; iterative improvement
UR - http://eudml.org/doc/193389
ER -

References

top
  1. F. CHATELIN, Linear spectral approximation in Banach spaces (to appear). Zbl0517.65036
  2. P. G. CIARLET, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). Zbl0383.65058MR520174
  3. D. GILBARG and N. S. TRUDINGER, Elliptic partial differential equations of second order.Springer-Verlag, Berlin-Heidelberg-New York (1977). Zbl0361.35003MR473443
  4. W. HACKBUSCH, Bemerkungen zur iterierten Defektkorrektur. (To appear in Rev.Roumaine Math. Pure Appl.) (1981). Zbl0475.65030MR646400
  5. Lin QUN, Some problems about the approximate solution for operator equations. Acta Math. Sinica 22 (1979) 219-230. Zbl0397.65070MR542459
  6. Lin QUN, Method to increase the accuracy of Lowe-degree finite element solutions... Computing Methods in Applied Sciences and Engineering, North-Holland, Amsterdam (1980). Zbl0438.73056MR584026
  7. J. NITSCHE, Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens. Numer.Math. 11 (1968) 346-348. Zbl0175.45801MR233502
  8. A. H. SCHATZ, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28 (1974) 959-962. Zbl0321.65059MR373326
  9. I. H. SLOAN, Improvement by iteration for compact operator equations. Math. Comp. 30(1976) 758-764. Zbl0343.45010MR474802
  10. H. STETTER, The defect correction principle and discretization methods. Numer. Math.29 (1978) 425-443. Zbl0362.65052MR474803
  11. G. STRANG and G FIX, Analysis of the finite element method. Prentice-Hall, EnglewoodCliffs,N. J. (1973). Zbl0356.65096MR443377

NotesEmbed ?

top

You must be logged in to post comments.