Iterative refinement of finite element approximations for elliptic problems
- Volume: 16, Issue: 1, page 39-47
- ISSN: 0764-583X
Access Full Article
topHow to cite
topReferences
top- F. CHATELIN, Linear spectral approximation in Banach spaces (to appear). Zbl0517.65036
- P. G. CIARLET, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). Zbl0383.65058MR520174
- D. GILBARG and N. S. TRUDINGER, Elliptic partial differential equations of second order.Springer-Verlag, Berlin-Heidelberg-New York (1977). Zbl0361.35003MR473443
- W. HACKBUSCH, Bemerkungen zur iterierten Defektkorrektur. (To appear in Rev.Roumaine Math. Pure Appl.) (1981). Zbl0475.65030MR646400
- Lin QUN, Some problems about the approximate solution for operator equations. Acta Math. Sinica 22 (1979) 219-230. Zbl0397.65070MR542459
- Lin QUN, Method to increase the accuracy of Lowe-degree finite element solutions... Computing Methods in Applied Sciences and Engineering, North-Holland, Amsterdam (1980). Zbl0438.73056MR584026
- J. NITSCHE, Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens. Numer.Math. 11 (1968) 346-348. Zbl0175.45801MR233502
- A. H. SCHATZ, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28 (1974) 959-962. Zbl0321.65059MR373326
- I. H. SLOAN, Improvement by iteration for compact operator equations. Math. Comp. 30(1976) 758-764. Zbl0343.45010MR474802
- H. STETTER, The defect correction principle and discretization methods. Numer. Math.29 (1978) 425-443. Zbl0362.65052MR474803
- G. STRANG and G FIX, Analysis of the finite element method. Prentice-Hall, EnglewoodCliffs,N. J. (1973). Zbl0356.65096MR443377