The warping, the torsion and the Neumann problems in a quasi-periodically perforated domain
M. L. Mascarenhas; D. Poliševski
- Volume: 28, Issue: 1, page 37-57
- ISSN: 0764-583X
Access Full Article
topHow to cite
topMascarenhas, M. L., and Poliševski, D.. "The warping, the torsion and the Neumann problems in a quasi-periodically perforated domain." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.1 (1994): 37-57. <http://eudml.org/doc/193730>.
@article{Mascarenhas1994,
author = {Mascarenhas, M. L., Poliševski, D.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {two-scale convergence method},
language = {eng},
number = {1},
pages = {37-57},
publisher = {Dunod},
title = {The warping, the torsion and the Neumann problems in a quasi-periodically perforated domain},
url = {http://eudml.org/doc/193730},
volume = {28},
year = {1994},
}
TY - JOUR
AU - Mascarenhas, M. L.
AU - Poliševski, D.
TI - The warping, the torsion and the Neumann problems in a quasi-periodically perforated domain
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 1
SP - 37
EP - 57
LA - eng
KW - two-scale convergence method
UR - http://eudml.org/doc/193730
ER -
References
top- [1] G. ALLAIRE, Homogénéisation et convergence à deux échelles. Applications à un problème de convection diffusion, C.R. Acad. Sci. Paris, t. 312, Série I (1991) pp. 581-586. Zbl0724.46033MR1101037
- [2] G. ALLAIRE, Homogenization and two-scale convergence, S.I.A.M. J. Math. Anal., 23, 6, pp. 1482-1518 (1992). Zbl0770.35005MR1185639
- [3] D. CHENAIS, On the existence of a solution in a domain identification problem, J. Math. Anal. and Appl., 52 (1975) pp. 189-289. Zbl0317.49005MR385666
- [4] CIORÃNESCU and J. S. J. PAULIN, Homogenization in open sets with holes, J. Math. Anal. appl., 71 (1979) pp. 590-607. Zbl0427.35073MR548785
- [5] V. GIRAULT and P. A. RAVIART, Finite Element Approximation of the Navier-Stokes Equation, Lecture Notes in Math., vol. 749, Springer (1981). Zbl0441.65081MR548867
- [6] R. V. KOHN, Numerical Structural Optimization via a Relaxed Formulation, lecture given at N.A.T.O.-A.S.I. on Free Boundary Problems and Domain Homogenization Univ. Montreal (1990). Zbl0767.73049
- [7] M. L. MASCARENHAS and D. POLIŠSEVSKI, Homogenization of the torsion problem with quasi-periodic structure, Numer. Funct. Anal. Optimiz, 13 (5 & 6), pp. 475-485 (1992). Zbl0761.35006MR1187907
- [8] M. L. MASCARENHAS and L. TRABUCHO, Homogenized behaviour of a beam with multicellular cross section, Appl. Anal., vol. 38 (1990) pp. 97-119. Zbl0684.73005MR1116177
- [9] F. MURAT, Compacité par compensation, Annali. Scuola Normale related Sup-Pisa, classe di Science, Serie IV, vol, v, n. 3 (1978). MR506997
- [10] G. NGUETSENG, A general convergence result for a functional related to the theroy of homogenization, S.I.A.M. J. Math. Anal., vol. 20, n°3 (1989) pp. 608-623. Zbl0688.35007MR990867
- [11] G. NGUETSENG, Asymptotic analysis for a stiff variational problem arising in Mechanics, S.I.A.M. J. Math. Anal., vol. 21, n° 6 (1990) pp. 1394-1414. Zbl0723.73011MR1075584
- [12] R. P. SPERB, Maximum Principles and their Application, (Mathematics in Science and Enginneering, vol. 157) Academic Press (1981). Zbl0454.35001MR615561
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.