The warping, the torsion and the Neumann problems in a quasi-periodically perforated domain

M. L. Mascarenhas; D. Poliševski

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1994)

  • Volume: 28, Issue: 1, page 37-57
  • ISSN: 0764-583X

How to cite

top

Mascarenhas, M. L., and Poliševski, D.. "The warping, the torsion and the Neumann problems in a quasi-periodically perforated domain." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.1 (1994): 37-57. <http://eudml.org/doc/193730>.

@article{Mascarenhas1994,
author = {Mascarenhas, M. L., Poliševski, D.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {two-scale convergence method},
language = {eng},
number = {1},
pages = {37-57},
publisher = {Dunod},
title = {The warping, the torsion and the Neumann problems in a quasi-periodically perforated domain},
url = {http://eudml.org/doc/193730},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Mascarenhas, M. L.
AU - Poliševski, D.
TI - The warping, the torsion and the Neumann problems in a quasi-periodically perforated domain
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 1
SP - 37
EP - 57
LA - eng
KW - two-scale convergence method
UR - http://eudml.org/doc/193730
ER -

References

top
  1. [1] G. ALLAIRE, Homogénéisation et convergence à deux échelles. Applications à un problème de convection diffusion, C.R. Acad. Sci. Paris, t. 312, Série I (1991) pp. 581-586. Zbl0724.46033MR1101037
  2. [2] G. ALLAIRE, Homogenization and two-scale convergence, S.I.A.M. J. Math. Anal., 23, 6, pp. 1482-1518 (1992). Zbl0770.35005MR1185639
  3. [3] D. CHENAIS, On the existence of a solution in a domain identification problem, J. Math. Anal. and Appl., 52 (1975) pp. 189-289. Zbl0317.49005MR385666
  4. [4] CIORÃNESCU and J. S. J. PAULIN, Homogenization in open sets with holes, J. Math. Anal. appl., 71 (1979) pp. 590-607. Zbl0427.35073MR548785
  5. [5] V. GIRAULT and P. A. RAVIART, Finite Element Approximation of the Navier-Stokes Equation, Lecture Notes in Math., vol. 749, Springer (1981). Zbl0441.65081MR548867
  6. [6] R. V. KOHN, Numerical Structural Optimization via a Relaxed Formulation, lecture given at N.A.T.O.-A.S.I. on Free Boundary Problems and Domain Homogenization Univ. Montreal (1990). Zbl0767.73049
  7. [7] M. L. MASCARENHAS and D. POLIŠSEVSKI, Homogenization of the torsion problem with quasi-periodic structure, Numer. Funct. Anal. Optimiz, 13 (5 & 6), pp. 475-485 (1992). Zbl0761.35006MR1187907
  8. [8] M. L. MASCARENHAS and L. TRABUCHO, Homogenized behaviour of a beam with multicellular cross section, Appl. Anal., vol. 38 (1990) pp. 97-119. Zbl0684.73005MR1116177
  9. [9] F. MURAT, Compacité par compensation, Annali. Scuola Normale related Sup-Pisa, classe di Science, Serie IV, vol, v, n. 3 (1978). MR506997
  10. [10] G. NGUETSENG, A general convergence result for a functional related to the theroy of homogenization, S.I.A.M. J. Math. Anal., vol. 20, n°3 (1989) pp. 608-623. Zbl0688.35007MR990867
  11. [11] G. NGUETSENG, Asymptotic analysis for a stiff variational problem arising in Mechanics, S.I.A.M. J. Math. Anal., vol. 21, n° 6 (1990) pp. 1394-1414. Zbl0723.73011MR1075584
  12. [12] R. P. SPERB, Maximum Principles and their Application, (Mathematics in Science and Enginneering, vol. 157) Academic Press (1981). Zbl0454.35001MR615561

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.