Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies
Mathematical Modelling of Natural Phenomena (2010)
- Volume: 5, Issue: 4, page 54-72
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topChen, Thomas, and Pavlović, Nataša. "Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies." Mathematical Modelling of Natural Phenomena 5.4 (2010): 54-72. <http://eudml.org/doc/197630>.
@article{Chen2010,
abstract = {In this paper, we review some of our recent results in the study of the dynamics of
interacting Bose gases in the Gross-Pitaevskii (GP) limit. Our investigations focus on the
well-posedness of the associated Cauchy problem for the infinite particle system described
by the GP hierarchy.},
author = {Chen, Thomas, Pavlović, Nataša},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {Bose gas; Gross-Pitaevskii limit; BBGKY hierarchy; nonlinear Schrödinger equations; mean field limit},
language = {eng},
month = {5},
number = {4},
pages = {54-72},
publisher = {EDP Sciences},
title = {Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies},
url = {http://eudml.org/doc/197630},
volume = {5},
year = {2010},
}
TY - JOUR
AU - Chen, Thomas
AU - Pavlović, Nataša
TI - Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies
JO - Mathematical Modelling of Natural Phenomena
DA - 2010/5//
PB - EDP Sciences
VL - 5
IS - 4
SP - 54
EP - 72
AB - In this paper, we review some of our recent results in the study of the dynamics of
interacting Bose gases in the Gross-Pitaevskii (GP) limit. Our investigations focus on the
well-posedness of the associated Cauchy problem for the infinite particle system described
by the GP hierarchy.
LA - eng
KW - Bose gas; Gross-Pitaevskii limit; BBGKY hierarchy; nonlinear Schrödinger equations; mean field limit
UR - http://eudml.org/doc/197630
ER -
References
top- R. Adami, G. Golse, A. Teta. Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys., 127 (2007), No. 6, 1194–1220.
- M. Aizenman, E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason. Bose-Einstein Quantum Phase Transition in an Optical Lattice Model. Phys. Rev. A, 70 (2004), 023612.
- I. Anapolitanos, I.M. Sigal. The Hartree-von Neumann limit of many body dynamics. Preprint . URIhttp://arxiv.org/abs/0904.4514
- V. Bach, T. Chen, J. Fröhlich and I.M. Sigal. Smooth Feshbach map and operator-theoretic renormalization group methods. J. Funct. Anal., 203 (2003), No. 1, 44-92.
- T. Cazenave. Semilinear Schrödinger equations. Courant lecture notes, 10 (2003), Amer. Math. Soc..
- T. Chen, N. Pavlović. The quintic NLS as the mean field limit of a Boson gas with three-body interactions. J. Functional Analysis, conditionally accepted. Preprint . URIhttp://arxiv.org/abs/0812.2740
- T. Chen, N. Pavlović. On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies. Discr. Contin. Dyn. Syst., 27 (2010), No. 2, 715 - 739.
- T. Chen, N. Pavlović. A short proof of local wellposedness for focusing and defocusing Gross-Pitaevskii hierarchies. Preprint . URIhttp://arxiv.org/abs/0906.3277
- T. Chen, N. Pavlović. Higher order energy conservation, Gagliardo-Nirenberg-Sobolev inequalities, and global well-posedness for Gross-Pitaevskii hierarchies. Preprint . URIhttp://arxiv.org/abs/0906.2984
- T. Chen, N. Pavlović, N. Tzirakis. Energy conservation and blowup of solutions for focusing GP hierarchies. Preprint . URIhttp://arXiv.org/abs/0905.2704
- A. Elgart, L. Erdös, B. Schlein, H.-T. Yau. Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons. Arch. Rat. Mech. Anal., 179 (2006), No. 2, 265–283.
- L. Erdös, B. Schlein, H.-T. Yau. Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate. Comm. Pure Appl. Math., 59 (2006), No. 12, 1659–1741.
- L. Erdös, B. Schlein, H.-T. Yau. Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math., 167 (2007), 515–614.
- L. Erdös, H.-T. Yau. Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys., 5 (2001), No. 6, 1169–1205.
- J. Fröhlich, S. Graffi, S. Schwarz. Mean-field- and classical limit of many-body Schrödinger dynamics for bosons. Comm. Math. Phys., 271 (2007), no. 3, 681–697.
- J. Fröhlich, A. Knowles, A. Pizzo. Atomism and quantization. J. Phys. A, 40 (2007), No. 12, 3033–3045.
- J. Fröhlich, A. Knowles, S. Schwarz. On the Mean-Field Limit of Bosons with Coulomb Two-Body Interaction. Preprint arXiv:0805.4299.
- M. Grillakis, M. Machedon, A. Margetis. Second-order corrections to mean field evolution for weakly interacting Bosons I. Preprint . URIhttp://arxiv.org/abs/0904.0158
- M. Grillakis, A. Margetis. A priori estimates for many-body Hamiltonian evolution of interacting boson system. J. Hyperbolic Differ. Equ., 5 (2008), No. 4, 857–883.
- K. Hepp. The classical limit for quantum mechanical correlation functions. Comm. Math. Phys., 35 (1974), 265–277.
- S. Klainerman, M. Machedon. On the uniqueness of solutions to the Gross-Pitaevskii hierarchy. Commun. Math. Phys., 279 (2008), No. 1, 169–185.
- K. Kirkpatrick, B. Schlein, G. Staffilani. Derivation of the two dimensional nonlinear Schrödinger equation from many body quantum dynamics. Preprint arXiv:0808.0505.
- E.H. Lieb, R. Seiringer. Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett., 88 (2002), 170409.
- E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason. The mathematics of the Bose gas and its condensation. Birkhäuser (2005).
- E.H. Lieb, R. Seiringer, J. Yngvason. A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas. Commun. Math. Phys., 224 (2001) No. 1, 17–31.
- I. Rodnianski, B. Schlein. Quantum fluctuations and rate of convergence towards mean field dynamics. Comm. Math. Phys., 29 (2009), No. 1, 31–611.
- B. Schlein. Derivation of Effective Evolution Equations from Microscopic Quantum Dynamics. Lecture notes for the minicourse held at the 2008 CMI Summer School in Zurich.
- H. Spohn. Kinetic Equations from Hamiltonian Dynamics. Rev. Mod. Phys.52 (1980), No. 3, 569–615.
- T. Tao.Nonlinear dispersive equations. Local and global analysis. CBMS 106 (2006), AMS.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.