The duality correspondence of infinitesimal characters
Colloquium Mathematicae (1996)
- Volume: 70, Issue: 1, page 93-102
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topPrzebinda, Tomasz. "The duality correspondence of infinitesimal characters." Colloquium Mathematicae 70.1 (1996): 93-102. <http://eudml.org/doc/210401>.
@article{Przebinda1996,
abstract = {We determine the correspondence of infinitesimal characters of representations which occur in Howe's Duality Theorem. In the appendix we identify the lowest K-types, in the sense of Vogan, of the unitary highest weight representations of real reductive dual pairs with at least one member compact.},
author = {Przebinda, Tomasz},
journal = {Colloquium Mathematicae},
keywords = {infinitesimal characters; representations; Howe's duality theorem; dual pairs},
language = {eng},
number = {1},
pages = {93-102},
title = {The duality correspondence of infinitesimal characters},
url = {http://eudml.org/doc/210401},
volume = {70},
year = {1996},
}
TY - JOUR
AU - Przebinda, Tomasz
TI - The duality correspondence of infinitesimal characters
JO - Colloquium Mathematicae
PY - 1996
VL - 70
IS - 1
SP - 93
EP - 102
AB - We determine the correspondence of infinitesimal characters of representations which occur in Howe's Duality Theorem. In the appendix we identify the lowest K-types, in the sense of Vogan, of the unitary highest weight representations of real reductive dual pairs with at least one member compact.
LA - eng
KW - infinitesimal characters; representations; Howe's duality theorem; dual pairs
UR - http://eudml.org/doc/210401
ER -
References
top- [1] J. D. Adams, Discrete spectrum of the reductive dual pair (O(p,q), Sp(2m)), Invent. Math. 74 (1983), 449-475. Zbl0561.22011
- [2] J. D. Adams, Unitary highest weight modules, preprint. Zbl0623.22014
- [3] N. Bourbaki, Groupes et Algèbres de Lie, Hermann, Paris, 1968.
- [4] T. Y. Enright, R. Howe and N. R. Wallach, A classification of unitary highest weight modules, in: Representation Theory of Reductive Groups, P. C. Trombi (ed.), Birkhäuser, Boston, 1983, 97-143. Zbl0535.22012
- [5] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962.
- [6] R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), 539-570. Zbl0674.15021
- [7] R. Howe, Transcending the classical invariant theory, J. Amer. Math. Soc. 74 (1989), 449-475. Zbl0716.22006
- [8] R. Howe, θ-series and invariant theory, in: Proc. Sympos. Pure Math. 33, Amer. Math. Soc., Providence, R.I., 1979, 275-285.
- [9] R. Howe, manuscript in preparation on dual pairs.
- [10] R. Howe, Dual pairs in physics: harmonic oscillators, photons, electrons, and singletons, in: Lectures in Appl. Math. 21, Amer. Math. Soc., Providence, R.I., 1985, 179-207. Zbl0558.22018
- [11] R. Howe, On a notion of rank for unitary representations of the classical groups, in: Harmonic Analysis and Group Representations, Liguori, Napoli, 1982, 223-331.
- [12] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, Berlin, 1972. Zbl0254.17004
- [13] N. Jacobson, Basic Algebra I, W. H. Freeman, 1974.
- [14] N. Jacobson, Basic Algebra II, W. H. Freeman, 1980.
- [15] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representation and harmonic polynomials, Invent. Math. 44 (1978), 1-97. Zbl0375.22009
- [16] A. Knapp, Representation Theory of Semisimple Groups - an Overview Based on Examples, Princeton University Press, Princeton, N.J., 1986. Zbl0604.22001
- [17] A. Knapp and D. Vogan, Jr., Duality theorems in the relative Lie algebra cohomology, preprint.
- [18] R. Parthasarathy, Criteria for the unitarizability of some highest weight modules, Proc. Indian Acad. Sci. 89 (1980), 1-24. Zbl0434.22011
- [19] D. Vogan, Jr., Representation Theory of Real Reductive Lie Groups, Birkhäuser, Boston, 1981.
- [20] D. Vogan, Classifying representations by lowest K-types, in: Lectures in Appl. Math. 21, Amer. Math. Soc., 1985, 179-207.
- [21] H. Weyl, The Classical Groups, Princeton University Press, Princeton, N.J., 1946. Zbl1024.20502
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.