Surface measures and convergence of the Ornstein-Uhlenbeck semigroup in Wiener spaces
Luigi Ambrosio[1]; Alessio Figalli[2]
- [1] Scuola Normale Superiore, p.za dei Cavalieri 7, I-56126 Pisa, Italy.
- [2] The University of Texas at Austin, Department of Mathematics, 1 University Station C1200, Austin TX 78712, USA
Annales de la faculté des sciences de Toulouse Mathématiques (2011)
- Volume: 20, Issue: 2, page 407-438
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topAmbrosio, Luigi, and Figalli, Alessio. "Surface measures and convergence of the Ornstein-Uhlenbeck semigroup in Wiener spaces." Annales de la faculté des sciences de Toulouse Mathématiques 20.2 (2011): 407-438. <http://eudml.org/doc/219778>.
@article{Ambrosio2011,
abstract = {We study points of density $1/2$ of sets of finite perimeter in infinite-dimensional Gaussian spaces and prove that, as in the finite-dimensional theory, the surface measure is concentrated on this class of points. Here density $1/2$ is formulated in terms of the pointwise behaviour of the Ornstein-Uhlembeck semigroup.},
affiliation = {Scuola Normale Superiore, p.za dei Cavalieri 7, I-56126 Pisa, Italy.; The University of Texas at Austin, Department of Mathematics, 1 University Station C1200, Austin TX 78712, USA},
author = {Ambrosio, Luigi, Figalli, Alessio},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {4},
number = {2},
pages = {407-438},
publisher = {Université Paul Sabatier, Toulouse},
title = {Surface measures and convergence of the Ornstein-Uhlenbeck semigroup in Wiener spaces},
url = {http://eudml.org/doc/219778},
volume = {20},
year = {2011},
}
TY - JOUR
AU - Ambrosio, Luigi
AU - Figalli, Alessio
TI - Surface measures and convergence of the Ornstein-Uhlenbeck semigroup in Wiener spaces
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/4//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 2
SP - 407
EP - 438
AB - We study points of density $1/2$ of sets of finite perimeter in infinite-dimensional Gaussian spaces and prove that, as in the finite-dimensional theory, the surface measure is concentrated on this class of points. Here density $1/2$ is formulated in terms of the pointwise behaviour of the Ornstein-Uhlembeck semigroup.
LA - eng
UR - http://eudml.org/doc/219778
ER -
References
top- Airault (H.) and Malliavin (P.).— Intégration géométrique sur l’espace de Wiener, Bull. des Sciences Math., 112, p. 25-74 (1988). Zbl0656.60046MR942797
- Ambrosio (L.), Fusco (N.) and Pallara (D.).— “Functions of bounded variation and free discontinuity problems", Oxford Mathematical Monographs (2000). Zbl0957.49001MR1857292
- Ambrosio (L.), Maniglia (S.), Miranda Jr. (M.) and Pallara (D.).— functions in abstract Wiener spaces, J. Funct. Anal., 258, p. 785-813 (2010). Zbl1194.46066MR2558177
- Ambrosio (L.), Da Prato (G.) and Pallara (D.).— functions in a Hilbert space with respect to a Gaussian measure, Preprint, (2009), http://cvgmt.sns.it/cgi/get.cgi/papers/ambdappal/
- Ambrosio (L.), Miranda (M.) and Pallara (D.).— Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability, Discrete Contin. Dyn. Syst. Series A, 28, p. 591-606 (2010). Zbl1196.28023MR2644758
- Besicovitch (A.P.).— On the existence of subsets of finite measure of sets of infinite measure, Indag. Math., 14, p. 339-344 (1952). Zbl0046.28202MR48540
- Bogachev (V.I.).— “Gaussian Measures", American Mathematical Society (1998). Zbl0913.60035MR1642391
- De Giorgi (E.).— Definizione ed espressione analitica del perimetro di un insieme, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat., 8, p. 390-393 (1953). Zbl0051.29403MR56066
- De Giorgi (E.).— Su una teoria generale della misura -dimensionale in uno spazio ad dimensioni, Ann. Mat. Pura Appl., 4, p. 191-213 (1954). Zbl0055.28504MR62214
- Federer (H.).— A note on the Gauss-Green theorem, Proc. Amer. Math. Soc., 9, p. 447-451 (1958). Zbl0087.27302MR95245
- Federer (H.).— “Geometric measure theory", Springer (1969). Zbl0874.49001MR257325
- Feyel (D.) and De la Pradelle (A.).— Hausdorff measures on the Wiener space, Potential Anal., 1, p. 177-189 (1992). Zbl1081.28500MR1245885
- Figalli (A.), Maggi (F.) and Pratelli (A.).— A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math., 182, p. 167-211 (2010). Zbl1196.49033MR2672283
- Fukushima (M.).— On semimartingale characterization of functionals of symmetric Markov processes, Electron J. Probab., 4, p. 1-32 (1999). Zbl0936.60067
- Fukushima (M.).— functions and distorted Ornstein-Uhlenbeck processes over the abstract Wiener space, J. Funct. Anal., 174, p. 227-249 (2000). Zbl0978.60088MR1761369
- Fukushima (M.) and M. Hino (M.).— On the space of functions and a related stochastic calculus in infinite dimensions, J. Funct. Anal., 183, p. 245-268 (2001). Zbl0993.60049MR1837539
- Hino (M.).— Sets of finite perimeter and the Hausdorff-Gauss measure on the Wiener space, J. Funct. Anal., 258, p. 1656-1681 (2010). Zbl1196.46029MR2566314
- Ledoux (M.).— Isoperimetry and Gaussian analysis, in ”Lectures on Probability Theory and Statistics“, Saint Flour, 1994 Lecture Notes in Mathematics, 1648, Springer (1996). Zbl0874.60005MR1600888
- Ledoux (M.).— Semigroup proof of the isoperimetric inequaliy in Euclidean and Gaussian spaces, Bull. Sci. Math., 118, p. 485-510 (1994). Zbl0841.49024MR1309086
- Preiss (D.).— Gaussian measures and the density theorem, Comment. Math. Univ. Carolin., 22, p. 181-193 (1981). Zbl0459.28015MR609946
- Stein (E.M.).— “Topics in Harmonic Analysis related to the Littlewood-Paley theory", Annals of Mathematics Studies 63, Princeton University Press (1970). Zbl0193.10502MR252961
- Zambotti (L.).— Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection, Probab. Theory Relat. Fields, 123, p. 579-600 (2002). Zbl1009.60047MR1921014
- Ziemer (W.P.).— “Weakly differentiable functions”, Graduate Texts in Mathematics, Springer (1989). Zbl0692.46022MR1014685
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.