Surface measures and convergence of the Ornstein-Uhlenbeck semigroup in Wiener spaces

Luigi Ambrosio[1]; Alessio Figalli[2]

  • [1] Scuola Normale Superiore, p.za dei Cavalieri 7, I-56126 Pisa, Italy.
  • [2] The University of Texas at Austin, Department of Mathematics, 1 University Station C1200, Austin TX 78712, USA

Annales de la faculté des sciences de Toulouse Mathématiques (2011)

  • Volume: 20, Issue: 2, page 407-438
  • ISSN: 0240-2963

Abstract

top
We study points of density 1 / 2 of sets of finite perimeter in infinite-dimensional Gaussian spaces and prove that, as in the finite-dimensional theory, the surface measure is concentrated on this class of points. Here density 1 / 2 is formulated in terms of the pointwise behaviour of the Ornstein-Uhlembeck semigroup.

How to cite

top

Ambrosio, Luigi, and Figalli, Alessio. "Surface measures and convergence of the Ornstein-Uhlenbeck semigroup in Wiener spaces." Annales de la faculté des sciences de Toulouse Mathématiques 20.2 (2011): 407-438. <http://eudml.org/doc/219778>.

@article{Ambrosio2011,
abstract = {We study points of density $1/2$ of sets of finite perimeter in infinite-dimensional Gaussian spaces and prove that, as in the finite-dimensional theory, the surface measure is concentrated on this class of points. Here density $1/2$ is formulated in terms of the pointwise behaviour of the Ornstein-Uhlembeck semigroup.},
affiliation = {Scuola Normale Superiore, p.za dei Cavalieri 7, I-56126 Pisa, Italy.; The University of Texas at Austin, Department of Mathematics, 1 University Station C1200, Austin TX 78712, USA},
author = {Ambrosio, Luigi, Figalli, Alessio},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {4},
number = {2},
pages = {407-438},
publisher = {Université Paul Sabatier, Toulouse},
title = {Surface measures and convergence of the Ornstein-Uhlenbeck semigroup in Wiener spaces},
url = {http://eudml.org/doc/219778},
volume = {20},
year = {2011},
}

TY - JOUR
AU - Ambrosio, Luigi
AU - Figalli, Alessio
TI - Surface measures and convergence of the Ornstein-Uhlenbeck semigroup in Wiener spaces
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/4//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 2
SP - 407
EP - 438
AB - We study points of density $1/2$ of sets of finite perimeter in infinite-dimensional Gaussian spaces and prove that, as in the finite-dimensional theory, the surface measure is concentrated on this class of points. Here density $1/2$ is formulated in terms of the pointwise behaviour of the Ornstein-Uhlembeck semigroup.
LA - eng
UR - http://eudml.org/doc/219778
ER -

References

top
  1. Airault (H.) and Malliavin (P.).— Intégration géométrique sur l’espace de Wiener, Bull. des Sciences Math., 112, p. 25-74 (1988). Zbl0656.60046MR942797
  2. Ambrosio (L.), Fusco (N.) and Pallara (D.).— “Functions of bounded variation and free discontinuity problems", Oxford Mathematical Monographs (2000). Zbl0957.49001MR1857292
  3. Ambrosio (L.), Maniglia (S.), Miranda Jr. (M.) and Pallara (D.).— B V functions in abstract Wiener spaces, J. Funct. Anal., 258, p. 785-813 (2010). Zbl1194.46066MR2558177
  4. Ambrosio (L.), Da Prato (G.) and Pallara (D.).— B V functions in a Hilbert space with respect to a Gaussian measure, Preprint, (2009), http://cvgmt.sns.it/cgi/get.cgi/papers/ambdappal/ 
  5. Ambrosio (L.), Miranda (M.) and Pallara (D.).— Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability, Discrete Contin. Dyn. Syst. Series A, 28, p. 591-606 (2010). Zbl1196.28023MR2644758
  6. Besicovitch (A.P.).— On the existence of subsets of finite measure of sets of infinite measure, Indag. Math., 14, p. 339-344 (1952). Zbl0046.28202MR48540
  7. Bogachev (V.I.).— “Gaussian Measures", American Mathematical Society (1998). Zbl0913.60035MR1642391
  8. De Giorgi (E.).— Definizione ed espressione analitica del perimetro di un insieme, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat., 8, p. 390-393 (1953). Zbl0051.29403MR56066
  9. De Giorgi (E.).— Su una teoria generale della misura ( r - 1 ) -dimensionale in uno spazio ad r dimensioni, Ann. Mat. Pura Appl., 4, p. 191-213 (1954). Zbl0055.28504MR62214
  10. Federer (H.).— A note on the Gauss-Green theorem, Proc. Amer. Math. Soc., 9, p. 447-451 (1958). Zbl0087.27302MR95245
  11. Federer (H.).— “Geometric measure theory", Springer (1969). Zbl0874.49001MR257325
  12. Feyel (D.) and De la Pradelle (A.).— Hausdorff measures on the Wiener space, Potential Anal., 1, p. 177-189 (1992). Zbl1081.28500MR1245885
  13. Figalli (A.), Maggi (F.) and Pratelli (A.).— A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math., 182, p. 167-211 (2010). Zbl1196.49033MR2672283
  14. Fukushima (M.).— On semimartingale characterization of functionals of symmetric Markov processes, Electron J. Probab., 4, p. 1-32 (1999). Zbl0936.60067
  15. Fukushima (M.).— B V functions and distorted Ornstein-Uhlenbeck processes over the abstract Wiener space, J. Funct. Anal., 174, p. 227-249 (2000). Zbl0978.60088MR1761369
  16. Fukushima (M.) and M. Hino (M.).— On the space of B V functions and a related stochastic calculus in infinite dimensions, J. Funct. Anal., 183, p. 245-268 (2001). Zbl0993.60049MR1837539
  17. Hino (M.).— Sets of finite perimeter and the Hausdorff-Gauss measure on the Wiener space, J. Funct. Anal., 258, p. 1656-1681 (2010). Zbl1196.46029MR2566314
  18. Ledoux (M.).— Isoperimetry and Gaussian analysis, in ”Lectures on Probability Theory and Statistics“, Saint Flour, 1994 Lecture Notes in Mathematics, 1648, Springer (1996). Zbl0874.60005MR1600888
  19. Ledoux (M.).— Semigroup proof of the isoperimetric inequaliy in Euclidean and Gaussian spaces, Bull. Sci. Math., 118, p. 485-510 (1994). Zbl0841.49024MR1309086
  20. Preiss (D.).— Gaussian measures and the density theorem, Comment. Math. Univ. Carolin., 22, p. 181-193 (1981). Zbl0459.28015MR609946
  21. Stein (E.M.).— “Topics in Harmonic Analysis related to the Littlewood-Paley theory", Annals of Mathematics Studies 63, Princeton University Press (1970). Zbl0193.10502MR252961
  22. Zambotti (L.).— Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection, Probab. Theory Relat. Fields, 123, p. 579-600 (2002). Zbl1009.60047MR1921014
  23. Ziemer (W.P.).— “Weakly differentiable functions”, Graduate Texts in Mathematics, Springer (1989). Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.