Cutwidth of the r-dimensional Mesh of d-ary Trees
RAIRO - Theoretical Informatics and Applications (2010)
- Volume: 34, Issue: 6, page 515-519
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topVrťo, Imrich. "Cutwidth of the r-dimensional Mesh of d-ary Trees." RAIRO - Theoretical Informatics and Applications 34.6 (2010): 515-519. <http://eudml.org/doc/221959>.
@article{Vrťo2010,
abstract = {
We prove that the cutwidth of the r-dimensional mesh of d-ary trees is of order
$\Theta(d^\{(r-1)n+1\})$, which improves and generalizes previous results.
},
author = {Vrťo, Imrich},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Bisection; cutwidth; interconnection networks; mesh of trees.; mesh; trees},
language = {eng},
month = {3},
number = {6},
pages = {515-519},
publisher = {EDP Sciences},
title = {Cutwidth of the r-dimensional Mesh of d-ary Trees},
url = {http://eudml.org/doc/221959},
volume = {34},
year = {2010},
}
TY - JOUR
AU - Vrťo, Imrich
TI - Cutwidth of the r-dimensional Mesh of d-ary Trees
JO - RAIRO - Theoretical Informatics and Applications
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 6
SP - 515
EP - 519
AB -
We prove that the cutwidth of the r-dimensional mesh of d-ary trees is of order
$\Theta(d^{(r-1)n+1})$, which improves and generalizes previous results.
LA - eng
KW - Bisection; cutwidth; interconnection networks; mesh of trees.; mesh; trees
UR - http://eudml.org/doc/221959
ER -
References
top- D. Barth, Réseaux d'Interconnexion: Structures et Communications. PhD. Thesis. LABRI, Université Bordeaux I, France (1994).
- D. Barth, Bandwidth and cutwidth of the mesh of d-ary trees, in Proc. 2nd Intl. Euro-Par Conference, edited by L. Bougé et al. Springer Verlag, Berlin, Lecture Notes in Comput. Sci.1123 (1996) 243-246.
- M.M. Eshagian and V.K. Prasanna, Parallel geometric algorithms for digital pictures on mesh of trees, in Proc. 27th Annual IEEE Symposium on Foundation of Computer Science. IEEE Computer Society Press, Los Alamitos (1986) 270-273.
- F.T. Leighton, Complexity Issues in VLSI. MIT Press, Cambridge (1983).
- F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, and Hypercubes. Morgan Kaufmann Publishers, San Mateo (1992).
- T. Lengauer, Upper and Lower Bounds for the Min Cut Linear Arrangenents Problem on Trees. SIAM J. Algebraic Discrete Methods3 (1982) 99-113.
- A.D. Lopez and H.F.S. Law, A Dense Gate Matrix Layout Method for MOS VLSI. IEEE Trans. Electr. Dev.27 (1980) 1671-1675.
- K. Nakano, Linear layout of generalized hypercubes, in Proc. 19th Intl. Workshop on Graph-Theoretic Concepts in Computer Science. Springer Verlag, Berlin, Lecture Notes in Comput. Sci.790 (1994) 364-375.
- A. Raspaud, O. Sýkora and I. Vrto, Cutwidth of the de Bruijn Graph. RAIRO Theoret. Informatics Appl.26 (1996) 509-514.
- M. Yannakakis, A Polynomial Algorithm for the Min Cut Linear Arrangement of Trees. J. ACM32 (1985) 950-988.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.