The discrete compactness property for anisotropic edge elements on polyhedral domains∗
ESAIM: Mathematical Modelling and Numerical Analysis (2012)
- Volume: 47, Issue: 1, page 169-181
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topLombardi, Ariel Luis. "The discrete compactness property for anisotropic edge elements on polyhedral domains∗." ESAIM: Mathematical Modelling and Numerical Analysis 47.1 (2012): 169-181. <http://eudml.org/doc/222148>.
@article{Lombardi2012,
abstract = {We prove the discrete compactness property of the edge elements of any order on a class
of anisotropically refined meshes on polyhedral domains. The meshes, made up of
tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl.
Sci. 21 (1998) 519–549]. They are appropriately graded near
singular corners and edges of the polyhedron.},
author = {Lombardi, Ariel Luis},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Discrete compactness property; edge elements; anisotropic finite elements; Maxwell equations; discrete compactness property},
language = {eng},
month = {8},
number = {1},
pages = {169-181},
publisher = {EDP Sciences},
title = {The discrete compactness property for anisotropic edge elements on polyhedral domains∗},
url = {http://eudml.org/doc/222148},
volume = {47},
year = {2012},
}
TY - JOUR
AU - Lombardi, Ariel Luis
TI - The discrete compactness property for anisotropic edge elements on polyhedral domains∗
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2012/8//
PB - EDP Sciences
VL - 47
IS - 1
SP - 169
EP - 181
AB - We prove the discrete compactness property of the edge elements of any order on a class
of anisotropically refined meshes on polyhedral domains. The meshes, made up of
tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl.
Sci. 21 (1998) 519–549]. They are appropriately graded near
singular corners and edges of the polyhedron.
LA - eng
KW - Discrete compactness property; edge elements; anisotropic finite elements; Maxwell equations; discrete compactness property
UR - http://eudml.org/doc/222148
ER -
References
top- T. Apel and S. Nicaise, The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges, Math. Meth. Appl. Sci.21 (1998) 519–549.
- D. Boffi, Fortin operator and discrete compactness for edge elements. Numer. Math.87 (2000) 229–246.
- D. Boffi, Finite element approximation of eigenvalue problems. Acta Numer.19 (2010) 1–120.
- A. Buffa, M. Costabel and M. Dauge, Algebraic convergence for anisotropic edge elements in polyhedral domains. Numer. Math.101 (2005) 29–65.
- S. Caorsi, P. Fernandes and M. Raffetto, On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems, SIAM J. Numer. Anal.38 (2000) 580–607.
- S. Caorsi, P. Fernandes and M. Raffetto, Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements. Math. Model. Numer. Anal.35 (2001) 331–354.
- V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, in Theory and Applications. Springer-Verlag, Berlin (1986).
- R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer.11 (2002) 237–339.
- F. Kikuchi, On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo Sect. IA Math.36 (1989) 479–490.
- M. Krízek, On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal.29 (1992) 513–520.
- R. Leis, Initial Boundary Value Problems in Mathematical Physics. John Wiley, New York (1986).
- A.L. Lombardi, Interpolation error estimates for edge elements on anisotropic meshes. IMA J. Numer. Anal.31 (2011) 1683–1712.
- P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003).
- P. Monk and L. Demkowicz, Discrete compactness and the approximation of Maxwell’s equations in R3. Math. Comp.70 (2001) 507–523.
- J.C. Nédélec, Mixed finite elements in R3. Numer. Math.35 (1980) 315–341.
- S. Nicaise, Edge elements on anisotropic meshes and approximation of the Maxwell equations. SIAM J. Numer. Anal.39 (2001) 784–816.
- P. A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, edited by I. Galligani and E. Magenes. Lect. Notes Math.606 (1977).
- Ch. Weber, A local compactness theorem for Maxwell’s equations. Math. Meth. Appl. Sci.2 (1980) 12–25.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.