Intermittency and ageing for the symbiotic branching model
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 2, page 376-394
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topAurzada, Frank, and Döring, Leif. "Intermittency and ageing for the symbiotic branching model." Annales de l'I.H.P. Probabilités et statistiques 47.2 (2011): 376-394. <http://eudml.org/doc/240811>.
@article{Aurzada2011,
abstract = {For the symbiotic branching model introduced in [Stochastic Process. Appl.114 (2004) 127–160], it is shown that ageing and intermittency exhibit different behaviour for negative, zero, and positive correlations. Our approach also provides an alternative, elementary proof and refinements of classical results concerning second moments of the parabolic Anderson model with brownian potential. Some refinements to more general (also infinite range) kernels of recent ageing results of [Ann. Inst. H. Poincaré Probab. Statist.43 (2007) 461–480] for interacting diffusions are given.},
author = {Aurzada, Frank, Döring, Leif},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {ageing; interacting diffusions; intermittency; mutually catalytic branching model; parabolic Anderson model; symbiotic branching model},
language = {eng},
number = {2},
pages = {376-394},
publisher = {Gauthier-Villars},
title = {Intermittency and ageing for the symbiotic branching model},
url = {http://eudml.org/doc/240811},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Aurzada, Frank
AU - Döring, Leif
TI - Intermittency and ageing for the symbiotic branching model
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 2
SP - 376
EP - 394
AB - For the symbiotic branching model introduced in [Stochastic Process. Appl.114 (2004) 127–160], it is shown that ageing and intermittency exhibit different behaviour for negative, zero, and positive correlations. Our approach also provides an alternative, elementary proof and refinements of classical results concerning second moments of the parabolic Anderson model with brownian potential. Some refinements to more general (also infinite range) kernels of recent ageing results of [Ann. Inst. H. Poincaré Probab. Statist.43 (2007) 461–480] for interacting diffusions are given.
LA - eng
KW - ageing; interacting diffusions; intermittency; mutually catalytic branching model; parabolic Anderson model; symbiotic branching model
UR - http://eudml.org/doc/240811
ER -
References
top- [1] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Encyclopedia of Mathematics and Its Applications 27. Cambridge Univ. Press, Cambridge, 1989. Zbl0667.26003MR1015093
- [2] J. Blath, L. Döring and A. Etheridge. On the moments and the interface of symbiotic branching model. Preprint, 2009. Zbl1219.60082MR2778802
- [3] R. Carmona and S. A. Molchanov. Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108 (1994) viii+125. Zbl0925.35074MR1185878
- [4] J. T. Cox, D. A. Dawson and A. Greven. Mutually catalytic super branching random walks: Large finite systems and renormalization analysis. Mem. Amer. Math. Soc. 171 (2004) viii+97. Zbl1063.60143MR2074427
- [5] J. T. Cox and A. Klenke. Recurrence and ergodicity of interacting particle systems. Probab. Theory Related Fields 116 (2000) 239–255. Zbl0954.60095MR1743771
- [6] D. A. Dawson and E. A. Perkins. Long-time behavior and coexistence in a mutually catalytic branching model. Ann. Probab. 26 (1998) 1088–1138. Zbl0938.60042MR1634416
- [7] A. Dembo and J.-D. Deuschel. Ageing for interacting diffusion processes. Ann. Inst. H. Poincaré Probab. Statist. 43 (2007) 461–480. Zbl1117.60088MR2329512
- [8] A. M. Etheridge and K. Fleischmann. Compact interface property for symbiotic branching. Stochastic Process. Appl. 114 (2004) 127–160. Zbl1072.60086MR2094150
- [9] M. Foondun and D. Khoshnevisan. Intermittency for nonlinear parabolic stochastic partial differential equations. Electron. J. Probab. 14 (2009) 548–568. Zbl1190.60051MR2480553
- [10] J. Gärtner and S. Molchanov. Parabolic problems for the Anderson model. I. Intermittency and related topics. Comm. Math. Phys. 132 (1990) 613–655. Zbl0711.60055MR1069840
- [11] A. Greven and F. den Hollander. Phase transitions for the long-time behavior of interacting diffusions. Ann. Probab. 35 (2007) 1250–1306. Zbl1126.60085MR2330971
- [12] B. Hughes. Random Walks and Random Environments, Vol. 1. Oxford Univ. Press, New York, 1995. Zbl0820.60053MR1341369
- [13] M. B. Marcus and J. Rosen. Moment generating functions for local times of symmetric Markov processes and random walks. In Probability in Banach Spaces, 8 (Brunswick, ME, 1991) 364–376. Progr. Probab. 30. Birkhäuser, Boston, MA, 1992. Zbl0788.60092MR1227631
- [14] T. Shiga. Stepping stone models in population genetics and population dynamics. In Stochastic Processes in Physics and Engineering (Bielefeld, 1986) 345–355. Math. Appl. 42. Reidel, Dordrecht, 1988. Zbl0656.92006MR948717
- [15] T. Shiga and A. Shimizu. Infinite-dimensional stochastic differential equations and their applications. J. Math. Kyoto Univ. 20 (1980) 395–416. Zbl0462.60061MR591802
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.