Intermittency and ageing for the symbiotic branching model
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 2, page 376-394
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Encyclopedia of Mathematics and Its Applications 27. Cambridge Univ. Press, Cambridge, 1989. Zbl0667.26003MR1015093
- [2] J. Blath, L. Döring and A. Etheridge. On the moments and the interface of symbiotic branching model. Preprint, 2009. Zbl1219.60082MR2778802
- [3] R. Carmona and S. A. Molchanov. Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108 (1994) viii+125. Zbl0925.35074MR1185878
- [4] J. T. Cox, D. A. Dawson and A. Greven. Mutually catalytic super branching random walks: Large finite systems and renormalization analysis. Mem. Amer. Math. Soc. 171 (2004) viii+97. Zbl1063.60143MR2074427
- [5] J. T. Cox and A. Klenke. Recurrence and ergodicity of interacting particle systems. Probab. Theory Related Fields 116 (2000) 239–255. Zbl0954.60095MR1743771
- [6] D. A. Dawson and E. A. Perkins. Long-time behavior and coexistence in a mutually catalytic branching model. Ann. Probab. 26 (1998) 1088–1138. Zbl0938.60042MR1634416
- [7] A. Dembo and J.-D. Deuschel. Ageing for interacting diffusion processes. Ann. Inst. H. Poincaré Probab. Statist. 43 (2007) 461–480. Zbl1117.60088MR2329512
- [8] A. M. Etheridge and K. Fleischmann. Compact interface property for symbiotic branching. Stochastic Process. Appl. 114 (2004) 127–160. Zbl1072.60086MR2094150
- [9] M. Foondun and D. Khoshnevisan. Intermittency for nonlinear parabolic stochastic partial differential equations. Electron. J. Probab. 14 (2009) 548–568. Zbl1190.60051MR2480553
- [10] J. Gärtner and S. Molchanov. Parabolic problems for the Anderson model. I. Intermittency and related topics. Comm. Math. Phys. 132 (1990) 613–655. Zbl0711.60055MR1069840
- [11] A. Greven and F. den Hollander. Phase transitions for the long-time behavior of interacting diffusions. Ann. Probab. 35 (2007) 1250–1306. Zbl1126.60085MR2330971
- [12] B. Hughes. Random Walks and Random Environments, Vol. 1. Oxford Univ. Press, New York, 1995. Zbl0820.60053MR1341369
- [13] M. B. Marcus and J. Rosen. Moment generating functions for local times of symmetric Markov processes and random walks. In Probability in Banach Spaces, 8 (Brunswick, ME, 1991) 364–376. Progr. Probab. 30. Birkhäuser, Boston, MA, 1992. Zbl0788.60092MR1227631
- [14] T. Shiga. Stepping stone models in population genetics and population dynamics. In Stochastic Processes in Physics and Engineering (Bielefeld, 1986) 345–355. Math. Appl. 42. Reidel, Dordrecht, 1988. Zbl0656.92006MR948717
- [15] T. Shiga and A. Shimizu. Infinite-dimensional stochastic differential equations and their applications. J. Math. Kyoto Univ. 20 (1980) 395–416. Zbl0462.60061MR591802