Homogenization of the compressible Navier–Stokes equations in a porous medium
ESAIM: Control, Optimisation and Calculus of Variations (2002)
- Volume: 8, page 885-906
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topMasmoudi, Nader. "Homogenization of the compressible Navier–Stokes equations in a porous medium." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 885-906. <http://eudml.org/doc/245426>.
@article{Masmoudi2002,
abstract = {We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period $\{\varepsilon \}$) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.},
author = {Masmoudi, Nader},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {compressible Navier–Stokes; homogenization; porous medium equation; convergence; Dirichlet boundary conditions},
language = {eng},
pages = {885-906},
publisher = {EDP-Sciences},
title = {Homogenization of the compressible Navier–Stokes equations in a porous medium},
url = {http://eudml.org/doc/245426},
volume = {8},
year = {2002},
}
TY - JOUR
AU - Masmoudi, Nader
TI - Homogenization of the compressible Navier–Stokes equations in a porous medium
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 8
SP - 885
EP - 906
AB - We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ${\varepsilon }$) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.
LA - eng
KW - compressible Navier–Stokes; homogenization; porous medium equation; convergence; Dirichlet boundary conditions
UR - http://eudml.org/doc/245426
ER -
References
top- [1] G. Allaire, Homogenization of the Stokes flow in a connected porous medium. Asymptot. Anal. 2 (1989) 203-222. Zbl0682.76077MR1020348
- [2] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. Zbl0770.35005MR1185639
- [3] G. Allaire, Homogenization of the unsteady Stokes equations in porous media, in Progress in partial differential equations: Calculus of variations, applications, Pont-à-Mousson, 1991. Longman Sci. Tech., Harlow (1992) 109-123. Zbl0801.35103MR1194192
- [4] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North-Holland Publishing Co., Amsterdam (1978). Zbl0404.35001MR503330
- [5] M.E. Bogovskiĭ, Solutions of some problems of vector analysis, associated with the operators and , in Theory of cubature formulas and the application of functional analysis to problems of mathematical physics. Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk (1980) 5-40, 149. MR631691
- [6] L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31 (1961) 308-340. Zbl0116.18002MR138894
- [7] H. Darcy, Les fontaines publiques de la ville de Dijon. Dalmont Paris (1856).
- [8] J.I. Díaz, Two problems in homogenization of porous media, in Proc. of the Second International Seminar on Geometry, Continua and Microstructure, Getafe, 1998, Vol. 14 (1999) 141-155. Zbl0942.35021MR1758958
- [9] E. Feireisl, On compactness of solutions to the compressible isentropic Navier–Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolin. 42 (2001) 83-98. Zbl1115.35096
- [10] G.P. Galdi, An introduction to the mathematical theory of the Navier–Stokes equations, Vol. I. Springer-Verlag, New York (1994). Linearized steady problems. Zbl0949.35004
- [11] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (1969). Zbl0189.40603MR259693
- [12] J.-L. Lions, Some methods in the mathematical analysis of systems and their control. Kexue Chubanshe (Science Press), Beijing (1981). Zbl0542.93034MR664760
- [13] P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 1. The Clarendon Press Oxford University Press, New York (1996). Incompressible models, Oxford Science Publications. Zbl0866.76002MR1422251
- [14] P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 2. The Clarendon Press Oxford University Press, New York (1998). Compressible models, Oxford Science Publications. Zbl0908.76004MR1637634
- [15] R. Lipton and M. Avellaneda, Darcy’s law for slow viscous flow past a stationary array of bubbles. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990) 71-79. Zbl0850.76778
- [16] N. Masmoudi (in preparation).
- [17] A. Mikelić, Homogenization of nonstationary Navier–Stokes equations in a domain with a grained boundary. Ann. Mat. Pura Appl. (4) 158 (1991) 167-179. Zbl0758.35007
- [18] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. Zbl0688.35007MR990867
- [19] G. Nguetseng, Asymptotic analysis for a stiff variational problem arising in mechanics. SIAM J. Math. Anal. 21 (1990) 1394-1414. Zbl0723.73011MR1075584
- [20] E. Sánchez–Palencia, Nonhomogeneous media and vibration theory. Springer-Verlag, Berlin (1980). Zbl0432.70002
- [21] L. Tartar, Incompressible fluid flow in a porous medium: convergence of the homogenization process, in Nonhomogeneous media and vibration theory, edited by E. Sánchez–Palencia (1980) 368-377.
- [22] R. Temam, Navier–Stokes equations and nonlinear functional analysis. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, Second Edition (1995). Zbl0833.35110
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.