Homogenization of the compressible Navier–Stokes equations in a porous medium

Nader Masmoudi

ESAIM: Control, Optimisation and Calculus of Variations (2002)

  • Volume: 8, page 885-906
  • ISSN: 1292-8119

Abstract

top
We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ε ) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.

How to cite

top

Masmoudi, Nader. "Homogenization of the compressible Navier–Stokes equations in a porous medium." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 885-906. <http://eudml.org/doc/245426>.

@article{Masmoudi2002,
abstract = {We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period $\{\varepsilon \}$) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.},
author = {Masmoudi, Nader},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {compressible Navier–Stokes; homogenization; porous medium equation; convergence; Dirichlet boundary conditions},
language = {eng},
pages = {885-906},
publisher = {EDP-Sciences},
title = {Homogenization of the compressible Navier–Stokes equations in a porous medium},
url = {http://eudml.org/doc/245426},
volume = {8},
year = {2002},
}

TY - JOUR
AU - Masmoudi, Nader
TI - Homogenization of the compressible Navier–Stokes equations in a porous medium
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 8
SP - 885
EP - 906
AB - We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ${\varepsilon }$) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.
LA - eng
KW - compressible Navier–Stokes; homogenization; porous medium equation; convergence; Dirichlet boundary conditions
UR - http://eudml.org/doc/245426
ER -

References

top
  1. [1] G. Allaire, Homogenization of the Stokes flow in a connected porous medium. Asymptot. Anal. 2 (1989) 203-222. Zbl0682.76077MR1020348
  2. [2] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. Zbl0770.35005MR1185639
  3. [3] G. Allaire, Homogenization of the unsteady Stokes equations in porous media, in Progress in partial differential equations: Calculus of variations, applications, Pont-à-Mousson, 1991. Longman Sci. Tech., Harlow (1992) 109-123. Zbl0801.35103MR1194192
  4. [4] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North-Holland Publishing Co., Amsterdam (1978). Zbl0404.35001MR503330
  5. [5] M.E. Bogovskiĭ, Solutions of some problems of vector analysis, associated with the operators div and grad , in Theory of cubature formulas and the application of functional analysis to problems of mathematical physics. Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk (1980) 5-40, 149. MR631691
  6. [6] L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31 (1961) 308-340. Zbl0116.18002MR138894
  7. [7] H. Darcy, Les fontaines publiques de la ville de Dijon. Dalmont Paris (1856). 
  8. [8] J.I. Díaz, Two problems in homogenization of porous media, in Proc. of the Second International Seminar on Geometry, Continua and Microstructure, Getafe, 1998, Vol. 14 (1999) 141-155. Zbl0942.35021MR1758958
  9. [9] E. Feireisl, On compactness of solutions to the compressible isentropic Navier–Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolin. 42 (2001) 83-98. Zbl1115.35096
  10. [10] G.P. Galdi, An introduction to the mathematical theory of the Navier–Stokes equations, Vol. I. Springer-Verlag, New York (1994). Linearized steady problems. Zbl0949.35004
  11. [11] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (1969). Zbl0189.40603MR259693
  12. [12] J.-L. Lions, Some methods in the mathematical analysis of systems and their control. Kexue Chubanshe (Science Press), Beijing (1981). Zbl0542.93034MR664760
  13. [13] P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 1. The Clarendon Press Oxford University Press, New York (1996). Incompressible models, Oxford Science Publications. Zbl0866.76002MR1422251
  14. [14] P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 2. The Clarendon Press Oxford University Press, New York (1998). Compressible models, Oxford Science Publications. Zbl0908.76004MR1637634
  15. [15] R. Lipton and M. Avellaneda, Darcy’s law for slow viscous flow past a stationary array of bubbles. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990) 71-79. Zbl0850.76778
  16. [16] N. Masmoudi (in preparation). 
  17. [17] A. Mikelić, Homogenization of nonstationary Navier–Stokes equations in a domain with a grained boundary. Ann. Mat. Pura Appl. (4) 158 (1991) 167-179. Zbl0758.35007
  18. [18] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. Zbl0688.35007MR990867
  19. [19] G. Nguetseng, Asymptotic analysis for a stiff variational problem arising in mechanics. SIAM J. Math. Anal. 21 (1990) 1394-1414. Zbl0723.73011MR1075584
  20. [20] E. Sánchez–Palencia, Nonhomogeneous media and vibration theory. Springer-Verlag, Berlin (1980). Zbl0432.70002
  21. [21] L. Tartar, Incompressible fluid flow in a porous medium: convergence of the homogenization process, in Nonhomogeneous media and vibration theory, edited by E. Sánchez–Palencia (1980) 368-377. 
  22. [22] R. Temam, Navier–Stokes equations and nonlinear functional analysis. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, Second Edition (1995). Zbl0833.35110

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.