Central limit theorem for sampled sums of dependent random variables

Nadine Guillotin-Plantard; Clémentine Prieur

ESAIM: Probability and Statistics (2010)

  • Volume: 14, page 299-314
  • ISSN: 1292-8100

Abstract

top
We prove a central limit theorem for linear triangular arrays under weak dependence conditions. Our result is then applied to dependent random variables sampled by a -valued transient random walk. This extends the results obtained by [N. Guillotin-Plantard and D. Schneider, Stoch. Dynamics3 (2003) 477–497]. An application to parametric estimation by random sampling is also provided.

How to cite

top

Guillotin-Plantard, Nadine, and Prieur, Clémentine. "Central limit theorem for sampled sums of dependent random variables." ESAIM: Probability and Statistics 14 (2010): 299-314. <http://eudml.org/doc/250839>.

@article{Guillotin2010,
abstract = { We prove a central limit theorem for linear triangular arrays under weak dependence conditions. Our result is then applied to dependent random variables sampled by a $\{\mathbb Z\}$-valued transient random walk. This extends the results obtained by [N. Guillotin-Plantard and D. Schneider, Stoch. Dynamics3 (2003) 477–497]. An application to parametric estimation by random sampling is also provided. },
author = {Guillotin-Plantard, Nadine, Prieur, Clémentine},
journal = {ESAIM: Probability and Statistics},
keywords = {Random walks; weak dependence; central limit theorem; dynamical systems; random sampling; parametric estimation; random walk},
language = {eng},
month = {10},
pages = {299-314},
publisher = {EDP Sciences},
title = {Central limit theorem for sampled sums of dependent random variables},
url = {http://eudml.org/doc/250839},
volume = {14},
year = {2010},
}

TY - JOUR
AU - Guillotin-Plantard, Nadine
AU - Prieur, Clémentine
TI - Central limit theorem for sampled sums of dependent random variables
JO - ESAIM: Probability and Statistics
DA - 2010/10//
PB - EDP Sciences
VL - 14
SP - 299
EP - 314
AB - We prove a central limit theorem for linear triangular arrays under weak dependence conditions. Our result is then applied to dependent random variables sampled by a ${\mathbb Z}$-valued transient random walk. This extends the results obtained by [N. Guillotin-Plantard and D. Schneider, Stoch. Dynamics3 (2003) 477–497]. An application to parametric estimation by random sampling is also provided.
LA - eng
KW - Random walks; weak dependence; central limit theorem; dynamical systems; random sampling; parametric estimation; random walk
UR - http://eudml.org/doc/250839
ER -

References

top
  1. A.D. Barbour, R.M. Gerrard and G. Reinert, Iterates of expanding maps. Probab. Theory Relat. Fields116 (2000) 151–180.  
  2. J.M. Bardet, P. Doukhan, G. Lang and N. Ragache, Dependent Linderberg central limit theorem and some applications. ESAIM: PS12 (2008) 154–172.  
  3. H.C.P. Berbee, Random walks with stationary increments and renewal theory. Math. Centre Tracts 112, Amsterdam (1979).  
  4. P. Collet, S. Martinez and B. Schmitt, Exponential inequalities for dynamical measures of expanding maps of the interval. Probab. Theory. Relat. Fields123 (2002) 301–322.  
  5. C. Coulon-Prieur and P. Doukhan, A triangular CLT for weakly dependent sequences. Statist. Probab. Lett.47 (2000) 61–68.  
  6. D. Dacunha-Castelle and M. Duflo, Problèmes à temps mobile. Deuxième édition. Masson (1993).  
  7. J. Dedecker and C. Prieur, New dependence coefficients, Examples and applications to statistics. Probab. Theory Relat. Fields132 (2005) 203–236.  
  8. J. Dedecker, P. Doukhan, G. Lang, J.R. Leon, S. Louhichi and C. Prieur, Weak dependence: With Examples and Applications. Lect. Notes in Stat.190. Springer, XIV (2007).  
  9. C. Deniau, G. Oppenheim and M.C. Viano, Estimation de paramètre par échantillonnage aléatoire. (French. English summary) [Random sampling and parametric estimation]. C. R. Acad. Sci. Paris Sér. I Math.306 (1988) 565–568.  
  10. P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities. Stochastic Process. Appl.84 (1999) 313–342.  
  11. N. Guillotin-Plantard and D. Schneider, Limit theorems for sampled dynamical systems. Stoch. Dynamics3 (2003) 477–497.  
  12. F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z.180 (1982) 119–140.  
  13. I.A. Ibragimov, Some limit theorems for stationary processes. Theory Probab. Appl.7 (1962) 349–382.  
  14. J.F.C. Kingman, The ergodic theory of subadditive stochastic processes. J. R. Statist. Soc. B30 (1968) 499–510.  
  15. M. Lacey, On weak convergence in dynamical systems to self-similar processes with spectral representation. Trans. Amer. Math. Soc.328 (1991) 767–778.  
  16. M. Lacey, K. Petersen, D. Rudolph and M. Wierdl, Random ergodic theorems with universally representative sequences. Ann. Inst. H. Poincaré Probab. Statist.30 (1994) 353–395.  
  17. A. Lasota and J.A. Yorke, On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc.186 (1974) 481–488.  
  18. F. Merlevède and M. Peligrad, On the coupling of dependent random variables and applications. Empirical process techniques for dependent data. Birkhäuser, Boston (2002), pp. 171–193.  
  19. T. Morita, Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partition. J. Math. Soc. Jpn46 (1994) 309–343.  
  20. M. Peligrad and S. Utev, Central limit theorem for linear processes. Ann. Probab.25 (1997) 443–456.  
  21. E. Rio, About the Lindeberg method for strongly mixing sequences. ESAIM: PS1 (1995) 35–61.  
  22. M. Rosenblatt, A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42 (1956) 43–47.  
  23. Y.A. Rozanov and V.A. Volkonskii, Some limit theorems for random functions I. Theory Probab. Appl.4 (1959) 178–197.  
  24. C.J. Stone, On local and ratio limit theorems. Proc. Fifth Berkeley Symp. Math. Statist. Probab. Univ. Californie (1966), pp. 217–224.  
  25. S.A. Utev, Central limit theorem for dependent random variables. Probab. Theory Math. Statist.2 (1990) 519–528.  
  26. S.A. Utev, Sums of random variables with ϕ -mixing. Siberian Adv. Math.1 (1991) 124–155.  
  27. C.S. Withers, Central limit theorems for dependent variables. I. Z. Wahrsch. Verw. Gebiete57 (1981) 509–534 (corrigendum in Z. Wahrsch. Verw. Gebiete63 (1983) 555).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.