Central limit theorem for sampled sums of dependent random variables
Nadine Guillotin-Plantard; Clémentine Prieur
ESAIM: Probability and Statistics (2010)
- Volume: 14, page 299-314
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topGuillotin-Plantard, Nadine, and Prieur, Clémentine. "Central limit theorem for sampled sums of dependent random variables." ESAIM: Probability and Statistics 14 (2010): 299-314. <http://eudml.org/doc/250839>.
@article{Guillotin2010,
abstract = {
We prove a central limit theorem for linear triangular
arrays under weak dependence conditions. Our result is then applied
to dependent random variables sampled by a
$\{\mathbb Z\}$-valued transient random walk. This extends the results
obtained by [N. Guillotin-Plantard and D. Schneider, Stoch. Dynamics3 (2003) 477–497]. An application
to parametric estimation by random sampling is also provided.
},
author = {Guillotin-Plantard, Nadine, Prieur, Clémentine},
journal = {ESAIM: Probability and Statistics},
keywords = {Random walks; weak dependence; central limit theorem;
dynamical systems; random sampling; parametric estimation; random walk},
language = {eng},
month = {10},
pages = {299-314},
publisher = {EDP Sciences},
title = {Central limit theorem for sampled sums of dependent random variables},
url = {http://eudml.org/doc/250839},
volume = {14},
year = {2010},
}
TY - JOUR
AU - Guillotin-Plantard, Nadine
AU - Prieur, Clémentine
TI - Central limit theorem for sampled sums of dependent random variables
JO - ESAIM: Probability and Statistics
DA - 2010/10//
PB - EDP Sciences
VL - 14
SP - 299
EP - 314
AB -
We prove a central limit theorem for linear triangular
arrays under weak dependence conditions. Our result is then applied
to dependent random variables sampled by a
${\mathbb Z}$-valued transient random walk. This extends the results
obtained by [N. Guillotin-Plantard and D. Schneider, Stoch. Dynamics3 (2003) 477–497]. An application
to parametric estimation by random sampling is also provided.
LA - eng
KW - Random walks; weak dependence; central limit theorem;
dynamical systems; random sampling; parametric estimation; random walk
UR - http://eudml.org/doc/250839
ER -
References
top- A.D. Barbour, R.M. Gerrard and G. Reinert, Iterates of expanding maps. Probab. Theory Relat. Fields116 (2000) 151–180.
- J.M. Bardet, P. Doukhan, G. Lang and N. Ragache, Dependent Linderberg central limit theorem and some applications. ESAIM: PS12 (2008) 154–172.
- H.C.P. Berbee, Random walks with stationary increments and renewal theory. Math. Centre Tracts 112, Amsterdam (1979).
- P. Collet, S. Martinez and B. Schmitt, Exponential inequalities for dynamical measures of expanding maps of the interval. Probab. Theory. Relat. Fields123 (2002) 301–322.
- C. Coulon-Prieur and P. Doukhan, A triangular CLT for weakly dependent sequences. Statist. Probab. Lett.47 (2000) 61–68.
- D. Dacunha-Castelle and M. Duflo, Problèmes à temps mobile. Deuxième édition. Masson (1993).
- J. Dedecker and C. Prieur, New dependence coefficients, Examples and applications to statistics. Probab. Theory Relat. Fields132 (2005) 203–236.
- J. Dedecker, P. Doukhan, G. Lang, J.R. Leon, S. Louhichi and C. Prieur, Weak dependence: With Examples and Applications. Lect. Notes in Stat.190. Springer, XIV (2007).
- C. Deniau, G. Oppenheim and M.C. Viano, Estimation de paramètre par échantillonnage aléatoire. (French. English summary) [Random sampling and parametric estimation]. C. R. Acad. Sci. Paris Sér. I Math.306 (1988) 565–568.
- P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities. Stochastic Process. Appl.84 (1999) 313–342.
- N. Guillotin-Plantard and D. Schneider, Limit theorems for sampled dynamical systems. Stoch. Dynamics3 (2003) 477–497.
- F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z.180 (1982) 119–140.
- I.A. Ibragimov, Some limit theorems for stationary processes. Theory Probab. Appl.7 (1962) 349–382.
- J.F.C. Kingman, The ergodic theory of subadditive stochastic processes. J. R. Statist. Soc. B30 (1968) 499–510.
- M. Lacey, On weak convergence in dynamical systems to self-similar processes with spectral representation. Trans. Amer. Math. Soc.328 (1991) 767–778.
- M. Lacey, K. Petersen, D. Rudolph and M. Wierdl, Random ergodic theorems with universally representative sequences. Ann. Inst. H. Poincaré Probab. Statist.30 (1994) 353–395.
- A. Lasota and J.A. Yorke, On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc.186 (1974) 481–488.
- F. Merlevède and M. Peligrad, On the coupling of dependent random variables and applications. Empirical process techniques for dependent data. Birkhäuser, Boston (2002), pp. 171–193.
- T. Morita, Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partition. J. Math. Soc. Jpn46 (1994) 309–343.
- M. Peligrad and S. Utev, Central limit theorem for linear processes. Ann. Probab.25 (1997) 443–456.
- E. Rio, About the Lindeberg method for strongly mixing sequences. ESAIM: PS1 (1995) 35–61.
- M. Rosenblatt, A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42 (1956) 43–47.
- Y.A. Rozanov and V.A. Volkonskii, Some limit theorems for random functions I. Theory Probab. Appl.4 (1959) 178–197.
- C.J. Stone, On local and ratio limit theorems. Proc. Fifth Berkeley Symp. Math. Statist. Probab. Univ. Californie (1966), pp. 217–224.
- S.A. Utev, Central limit theorem for dependent random variables. Probab. Theory Math. Statist.2 (1990) 519–528.
- S.A. Utev, Sums of random variables with -mixing. Siberian Adv. Math.1 (1991) 124–155.
- C.S. Withers, Central limit theorems for dependent variables. I. Z. Wahrsch. Verw. Gebiete57 (1981) 509–534 (corrigendum in Z. Wahrsch. Verw. Gebiete63 (1983) 555).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.