Complex Plateau problem in non-Kähler manifolds

S. Ivashkovich

Annales Polonici Mathematici (1998)

  • Volume: 70, Issue: 1, page 131-143
  • ISSN: 0066-2216

Abstract

top
We consider the complex Plateau problem for strongly pseudoconvex contours in non-Kähler manifolds. We give a necessary and sufficient condition for the existence of solution in the class of manifolds carrying pluriclosed metric forms and propose a conjecture for the general case.

How to cite

top

S. Ivashkovich. "Complex Plateau problem in non-Kähler manifolds." Annales Polonici Mathematici 70.1 (1998): 131-143. <http://eudml.org/doc/262589>.

@article{S1998,
abstract = {We consider the complex Plateau problem for strongly pseudoconvex contours in non-Kähler manifolds. We give a necessary and sufficient condition for the existence of solution in the class of manifolds carrying pluriclosed metric forms and propose a conjecture for the general case.},
author = {S. Ivashkovich},
journal = {Annales Polonici Mathematici},
keywords = {meromorphic map; continuity principle; Hartogs extension theorem; spherical shell; complex Plateau problem; continuation of analytic objects; pluriclosed Hermitian metric; disk-convex complex space},
language = {eng},
number = {1},
pages = {131-143},
title = {Complex Plateau problem in non-Kähler manifolds},
url = {http://eudml.org/doc/262589},
volume = {70},
year = {1998},
}

TY - JOUR
AU - S. Ivashkovich
TI - Complex Plateau problem in non-Kähler manifolds
JO - Annales Polonici Mathematici
PY - 1998
VL - 70
IS - 1
SP - 131
EP - 143
AB - We consider the complex Plateau problem for strongly pseudoconvex contours in non-Kähler manifolds. We give a necessary and sufficient condition for the existence of solution in the class of manifolds carrying pluriclosed metric forms and propose a conjecture for the general case.
LA - eng
KW - meromorphic map; continuity principle; Hartogs extension theorem; spherical shell; complex Plateau problem; continuation of analytic objects; pluriclosed Hermitian metric; disk-convex complex space
UR - http://eudml.org/doc/262589
ER -

References

top
  1. [Ba] D. Barlet, Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie in: Séminaire Norguet IX, Lecture Notes in Math. 482, Springer, 1975, 1-158. 
  2. [Db] P. Dolbeault, Geometric measure theory and the calculus of variations in: Proc. Sympos. Pure Math. 44, Amer. Math. Soc., 1986, 171-205. 
  3. [Db-H] P. Dolbeault et G. Henkin, Surfaces de Riemann de bord donné dans n in: Contributions to Complex Analysis and Analytic Geometry, H. Skoda et al. (eds.), Aspects of Math. E26, Vieweg, 1994, 163-187. 
  4. [Ga] P. Gauduchon, Les métriques standard d'une surface à premier nombre de Betti pair Astérisque 126 (1985), 129-135. 
  5. [H] R. Harvey, Holomorphic chains and their boundaries in: Proc. Sympos. Pure Math. 30, Part 1, Amer. Math. Soc., 1977, 307-382. 
  6. [H-L] R. Harvey and H. Lawson, An intrinsic characterization of Kähler manifolds Invent. Math. 74 (1983), 169-198. Zbl0553.32008
  7. [H-L] G. Henkin and J. Leiterer, Theory of Functions on Complex Manifolds Monographs in Math., Birkhäuser, 1984. 
  8. [Iv-1] S. Ivashkovich, The Hartogs-type extension theorem for the meromorphic maps into compact Kähler manifolds Invent. Math. 109 (1992), 47-54. Zbl0738.32008
  9. [Iv-2] S. Ivashkovich, Continuity principle and extension properties of meromorphic mappings with values in non Kähler manifolds MSRI Preprint No. 1997-033, xxx.math-archive: math.CV/9704219. 
  10. [Iv-3] S. Ivashkovich, One example in concern with extension and separate analyticity properties of meromorphic mappings xxx.math-archive: math.CV/9804009, to appear in Amer. J. Math. 
  11. [Ka-1] M. Kato, Examples on an extension problem of holomorphic maps and holomorphic 1-dimensional foliations Tokyo J. Math. 13 (1990), 139-146. Zbl0718.32014
  12. [Ka-2] M. Kato, Compact quotient manifolds of domains in a complex 3-dimensional projective space and the Lebesgue measure of limit sets ibid. 19 (1996), 99-119. Zbl0864.57034
  13. [Ka-3] M. Kato, Compact complex manifolds containing 'global' spherical shells I in: Proc. Internat. Sympos. Algebraic Geometry, Kyoto, 1977, 45-84. 
  14. [Kl] M. Klimek, Pluripotential Theory London Math. Soc. Monographs (N.S.) 6, Cambridge Univ. Press, 1991. 
  15. [Lg] P. Lelong, Plurisubharmonic Functions and Positive Differential Forms Gordon and Breach, New York, 1969. 
  16. [Lv] E. Levi, Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse Ann. Mat. Pura Appl. 17 (1910), 61-87. 
  17. [Re] R. Remmert, Holomorphe und meromorphe Abbildungen komplexer Räume Math. Ann. 133 (1957), 328-370. Zbl0079.10201
  18. [Rs] H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconvex boundary in: Proc. Conf. Complex Analysis (Minneapolis, 1964), Springer, 1965, 242-256. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.