The operation of infimal convolution

Strömberg Thomas

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1996

Abstract

top
AbstractThis paper is a survey article on the theory and applications of infimal convolution. We consider the convex as well as the nonconvex case. In particular, we provide a detailed investigation of the regularizing effects of infimal convolution, and study continuity properties of the operation with respect to notions of variational convergence. Several examples are included and well-known results are complemented, unified or extended in various ways.CONTENTS1. Introduction and preliminaries....................................................5 1.1. Introduction............................................................................5 1.2. Organization..........................................................................6 1.3. Prerequisites.........................................................................6 1.4. Introductory examples...........................................................92. Elementary properties.............................................................14 2.1. Basic facts...........................................................................14 2.2. Infimal convolution of subadditive functions.........................17 2.3. Semicontinuity, continuity, and exactness............................19 2.4. Two examples......................................................................223. The convex case.....................................................................23 3.1. Basic results........................................................................23 3.2. Differential calculus, and first order differentiability..............28 3.3. Formulas on f ▫ g.................................................................31 3.4. Loss of differentiability.........................................................324. Continuity of the operation of infimal convolution....................33 4.1. Introduction.........................................................................34 4.2. Epi-convergence.................................................................35 4.3. The Mosco topology and the slice topology.........................36 4.4. The affine topology..............................................................38 4.5. The Attouch-Wets topology.................................................395. Regularization.........................................................................41 5.1. Introduction and first results................................................41 5.2. Approximation in Hilbert spaces...........................................47 5.3. Generalized Moreau-Yosida approximation.........................52References..................................................................................551991 Mathematics Subject Classification: 41A65, 46N10, 49J27, 49J45, 49J50, 49L25, 52A40, 52A41, 54B20, 65K10.

How to cite

top

Strömberg Thomas. The operation of infimal convolution. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1996. <http://eudml.org/doc/271746>.

@book{StrömbergThomas1996,
abstract = {AbstractThis paper is a survey article on the theory and applications of infimal convolution. We consider the convex as well as the nonconvex case. In particular, we provide a detailed investigation of the regularizing effects of infimal convolution, and study continuity properties of the operation with respect to notions of variational convergence. Several examples are included and well-known results are complemented, unified or extended in various ways.CONTENTS1. Introduction and preliminaries....................................................5 1.1. Introduction............................................................................5 1.2. Organization..........................................................................6 1.3. Prerequisites.........................................................................6 1.4. Introductory examples...........................................................92. Elementary properties.............................................................14 2.1. Basic facts...........................................................................14 2.2. Infimal convolution of subadditive functions.........................17 2.3. Semicontinuity, continuity, and exactness............................19 2.4. Two examples......................................................................223. The convex case.....................................................................23 3.1. Basic results........................................................................23 3.2. Differential calculus, and first order differentiability..............28 3.3. Formulas on f ▫ g.................................................................31 3.4. Loss of differentiability.........................................................324. Continuity of the operation of infimal convolution....................33 4.1. Introduction.........................................................................34 4.2. Epi-convergence.................................................................35 4.3. The Mosco topology and the slice topology.........................36 4.4. The affine topology..............................................................38 4.5. The Attouch-Wets topology.................................................395. Regularization.........................................................................41 5.1. Introduction and first results................................................41 5.2. Approximation in Hilbert spaces...........................................47 5.3. Generalized Moreau-Yosida approximation.........................52References..................................................................................551991 Mathematics Subject Classification: 41A65, 46N10, 49J27, 49J45, 49J50, 49L25, 52A40, 52A41, 54B20, 65K10.},
author = {Strömberg Thomas},
keywords = {infimal convolution; epigraphical addition; regularization; approximation; variational convergence; survey; regularizing effect; epi-convergence; slice topology; affine topology; Attouch-Wets topology; Moreau-Yosida approximation},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {The operation of infimal convolution},
url = {http://eudml.org/doc/271746},
year = {1996},
}

TY - BOOK
AU - Strömberg Thomas
TI - The operation of infimal convolution
PY - 1996
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - AbstractThis paper is a survey article on the theory and applications of infimal convolution. We consider the convex as well as the nonconvex case. In particular, we provide a detailed investigation of the regularizing effects of infimal convolution, and study continuity properties of the operation with respect to notions of variational convergence. Several examples are included and well-known results are complemented, unified or extended in various ways.CONTENTS1. Introduction and preliminaries....................................................5 1.1. Introduction............................................................................5 1.2. Organization..........................................................................6 1.3. Prerequisites.........................................................................6 1.4. Introductory examples...........................................................92. Elementary properties.............................................................14 2.1. Basic facts...........................................................................14 2.2. Infimal convolution of subadditive functions.........................17 2.3. Semicontinuity, continuity, and exactness............................19 2.4. Two examples......................................................................223. The convex case.....................................................................23 3.1. Basic results........................................................................23 3.2. Differential calculus, and first order differentiability..............28 3.3. Formulas on f ▫ g.................................................................31 3.4. Loss of differentiability.........................................................324. Continuity of the operation of infimal convolution....................33 4.1. Introduction.........................................................................34 4.2. Epi-convergence.................................................................35 4.3. The Mosco topology and the slice topology.........................36 4.4. The affine topology..............................................................38 4.5. The Attouch-Wets topology.................................................395. Regularization.........................................................................41 5.1. Introduction and first results................................................41 5.2. Approximation in Hilbert spaces...........................................47 5.3. Generalized Moreau-Yosida approximation.........................52References..................................................................................551991 Mathematics Subject Classification: 41A65, 46N10, 49J27, 49J45, 49J50, 49L25, 52A40, 52A41, 54B20, 65K10.
LA - eng
KW - infimal convolution; epigraphical addition; regularization; approximation; variational convergence; survey; regularizing effect; epi-convergence; slice topology; affine topology; Attouch-Wets topology; Moreau-Yosida approximation
UR - http://eudml.org/doc/271746
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.