Equilibrium states for interval maps: the potential - t log | D f |

Henk Bruin; Mike Todd

Annales scientifiques de l'École Normale Supérieure (2009)

  • Volume: 42, Issue: 4, page 559-600
  • ISSN: 0012-9593

Abstract

top
Let f : I I be a C 2 multimodal interval map satisfying polynomial growth of the derivatives along critical orbits. We prove the existence and uniqueness of equilibrium states for the potential φ t : x - t log | D f ( x ) | for t close to 1 , and also that the pressure function t P ( φ t ) is analytic on an appropriate interval near t = 1 .

How to cite

top

Bruin, Henk, and Todd, Mike. "Equilibrium states for interval maps: the potential $-t\log |Df|$." Annales scientifiques de l'École Normale Supérieure 42.4 (2009): 559-600. <http://eudml.org/doc/272190>.

@article{Bruin2009,
abstract = {Let $f:I \rightarrow I$ be a $C^2$ multimodal interval map satisfying polynomial growth of the derivatives along critical orbits. We prove the existence and uniqueness of equilibrium states for the potential $\phi _t:x\mapsto -t\log |Df(x)|$ for $t$ close to $1$, and also that the pressure function $t \mapsto P(\phi _t)$ is analytic on an appropriate interval near $t = 1$.},
author = {Bruin, Henk, Todd, Mike},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {equilibrium states; thermodynamic formalism; interval maps; non-uniform hyperbolicity},
language = {eng},
number = {4},
pages = {559-600},
publisher = {Société mathématique de France},
title = {Equilibrium states for interval maps: the potential $-t\log |Df|$},
url = {http://eudml.org/doc/272190},
volume = {42},
year = {2009},
}

TY - JOUR
AU - Bruin, Henk
AU - Todd, Mike
TI - Equilibrium states for interval maps: the potential $-t\log |Df|$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 4
SP - 559
EP - 600
AB - Let $f:I \rightarrow I$ be a $C^2$ multimodal interval map satisfying polynomial growth of the derivatives along critical orbits. We prove the existence and uniqueness of equilibrium states for the potential $\phi _t:x\mapsto -t\log |Df(x)|$ for $t$ close to $1$, and also that the pressure function $t \mapsto P(\phi _t)$ is analytic on an appropriate interval near $t = 1$.
LA - eng
KW - equilibrium states; thermodynamic formalism; interval maps; non-uniform hyperbolicity
UR - http://eudml.org/doc/272190
ER -

References

top
  1. [1] L. M. Abramov, The entropy of a derived automorphism, Dokl. Akad. Nauk SSSR128 (1959), 647–650. Zbl0094.10001MR113984
  2. [2] V. Baladi, Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics 16, World Scientific Publishing Co. Inc., 2000. Zbl1012.37015MR1793194
  3. [3] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math. 470, Springer, Berlin, 1975. Zbl0308.28010MR442989
  4. [4] H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Comm. Math. Phys. 168 (1995), 571–580. Zbl0827.58015MR1328254
  5. [5] H. Bruin, Topological conditions for the existence of absorbing Cantor sets, Trans. Amer. Math. Soc.350 (1998), 2229–2263. Zbl0901.58029MR1458316
  6. [6] H. Bruin, Minimal Cantor systems and unimodal maps, J. Difference Equ. Appl.9 (2003), 305–318. Zbl1026.37003MR1990338
  7. [7] H. Bruin & G. Keller, Equilibrium states for S -unimodal maps, Ergodic Theory Dynam. Systems18 (1998), 765–789. Zbl0916.58020MR1645373
  8. [8] H. Bruin, S. Luzzatto & S. Van Strien, Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup.36 (2003), 621–646. Zbl1039.37021MR2013929
  9. [9] H. Bruin, J. Rivera-Letelier, W. Shen & S. Van Strien, Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math.172 (2008), 509–533. Zbl1138.37019MR2393079
  10. [10] H. Bruin & M. Todd, Equilibrium states for interval maps: potentials with sup φ - inf φ l t ; h top ( f ) , Comm. Math. Phys.283 (2008), 579–611. Zbl1157.82022MR2434739
  11. [11] H. Bruin & S. Vaienti, Return time statistics for unimodal maps, Fund. Math.176 (2003), 77–94. Zbl1082.37037
  12. [12] H. Bruin & S. Van Strien, Expansion of derivatives in one-dimensional dynamics, Israel J. Math.137 (2003), 223–263. Zbl1122.37310
  13. [13] P. Collet, Statistics of closest return for some non-uniformly hyperbolic systems, Ergodic Theory Dynam. Systems21 (2001), 401–420. Zbl1002.37019
  14. [14] D. Fiebig, U.-R. Fiebig & M. Yuri, Pressure and equilibrium states for countable state Markov shifts, Israel J. Math.131 (2002), 221–257. Zbl1026.37020
  15. [15] F. Hofbauer, The topological entropy of the transformation x a x ( 1 - x ) , Monatsh. Math.90 (1980), 117–141. Zbl0433.54009
  16. [16] F. Hofbauer & G. Keller, Equilibrium states for piecewise monotonic transformations, Ergodic Theory Dynam. Systems2 (1982), 23–43. Zbl0499.28012
  17. [17] F. Hofbauer & G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z.180 (1982), 119–140. Zbl0485.28016
  18. [18] F. Hofbauer & G. Keller, Quadratic maps without asymptotic measure, Comm. Math. Phys.127 (1990), 319–337. Zbl0702.58034
  19. [19] F. Hofbauer & P. Raith, Topologically transitive subsets of piecewise monotonic maps, which contain no periodic points, Monatsh. Math.107 (1989), 217–239. Zbl0676.54049
  20. [20] G. Keller, Lifting measures to Markov extensions, Monatsh. Math.108 (1989), 183–200. Zbl0712.28008
  21. [21] G. Keller, Equilibrium states in ergodic theory, London Math. Soc. Stud. Texts 42, Cambridge Univ. Press, 1998. Zbl0896.28006MR1618769
  22. [22] G. Keller & T. Nowicki, Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps, Comm. Math. Phys.149 (1992), 31–69. Zbl0763.58024MR1182410
  23. [23] O. S. Kozlovski, Getting rid of the negative Schwarzian derivative condition, Ann. of Math.152 (2000), 743–762. Zbl0988.37044MR1815700
  24. [24] F. Ledrappier, Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynam. Systems1 (1981), 77–93. Zbl0487.28015MR627788
  25. [25] N. Makarov & S. Smirnov, Phase transition in subhyperbolic Julia sets, Ergodic Theory Dynam. Systems16 (1996), 125–157. Zbl0852.58067MR1375130
  26. [26] N. Makarov & S. Smirnov, On “thermodynamics” of rational maps. I. Negative spectrum, Comm. Math. Phys. 211 (2000), 705–743. Zbl0983.37033MR1773815
  27. [27] N. Makarov & S. Smirnov, On thermodynamics of rational maps. II. Non-recurrent maps, J. London Math. Soc. 67 (2003), 417–432. Zbl1050.37014MR1956144
  28. [28] R. D. Mauldin & M. Urbański, Gibbs states on the symbolic space over an infinite alphabet, Israel J. Math.125 (2001), 93–130. Zbl1016.37005MR1853808
  29. [29] I. Melbourne & M. Nicol, Almost sure invariance principle for nonuniformly hyperbolic systems, Comm. Math. Phys.260 (2005), 131–146. Zbl1084.37024MR2175992
  30. [30] W. de Melo & S. Van Strien, One-dimensional dynamics, Ergebnisse Math. Grenzg. (3) 25, Springer, 1993. Zbl0791.58003MR1239171
  31. [31] M. Misiurewicz & W. Szlenk, Entropy of piecewise monotone mappings, Studia Math.67 (1980), 45–63. Zbl0445.54007MR579440
  32. [32] T. Nowicki & D. Sands, Non-uniform hyperbolicity and universal bounds for S -unimodal maps, Invent. Math.132 (1998), 633–680. Zbl0908.58016MR1625708
  33. [33] Y. Pesin & S. Senti, Equilibrium measures for some one dimensional maps, preprint http://www.math.psu.edu/pesin/publications.html. Zbl1159.37007
  34. [34] Y. Pesin & S. Senti, Thermodynamical formalism associated with inducing schemes for one-dimensional maps, Mosc. Math. J. 5 (2005), 669–678, 743–744. Zbl1109.37028MR2241816
  35. [35] Y. Pesin & S. Senti, Equilibrium measures for maps with inducing schemes, J. Mod. Dyn.2 (2008), 397–430. Zbl1159.37007MR2417478
  36. [36] F. Przytycki, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc.119 (1993), 309–317. Zbl0787.58037MR1186141
  37. [37] P. Raith, Hausdorff-dimension für stückweise monotone Abbildungen, Thèse, Universität Wien, 1987. 
  38. [38] D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat.9 (1978), 83–87. Zbl0432.58013MR516310
  39. [39] D. Ruelle, Thermodynamic formalism, Encyclopedia of Mathematics and its Applications 5, Addison-Wesley Publishing Co., Reading, Mass., 1978. Zbl0401.28016MR511655
  40. [40] O. M. Sarig, Thermodynamic formalism for Markov shifts, Thèse, 2000, Tel-Aviv University. 
  41. [41] O. M. Sarig, Phase transitions for countable Markov shifts, Comm. Math. Phys.217 (2001), 555–577. Zbl1007.37018MR1822107
  42. [42] O. M. Sarig, Existence of Gibbs measures for countable Markov shifts, Proc. Amer. Math. Soc.131 (2003), 1751–1758. Zbl1009.37003MR1955261
  43. [43] J. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk27 (1972), 21–64. Zbl0246.28008MR399421
  44. [44] M. St. Pierre, Zur Hausdorff-Dimension spezieller invarianter Maße für Collet-Eckmann Abbildungen, Diplomarbeit, Erlangen, 1994. 
  45. [45] M. Todd, Distortion bounds for C 2 + η unimodal maps, Fund. Math.193 (2007), 37–77. Zbl1114.37020MR2284572
  46. [46] S. Van Strien & E. Vargas, Real bounds, ergodicity and negative Schwarzian for multimodal maps, J. Amer. Math. Soc.17 (2004), 749–782. Zbl1073.37043MR2083467
  47. [47] L.-S. Young, Recurrence times and rates of mixing, Israel J. Math.110 (1999), 153–188. Zbl0983.37005MR1750438
  48. [48] R. Zweimüller, Invariant measures for general(ized) induced transformations, Proc. Amer. Math. Soc.133 (2005), 2283–2295. Zbl1119.28011MR2138871

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.