Equilibrium states for interval maps: the potential
Annales scientifiques de l'École Normale Supérieure (2009)
- Volume: 42, Issue: 4, page 559-600
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topBruin, Henk, and Todd, Mike. "Equilibrium states for interval maps: the potential $-t\log |Df|$." Annales scientifiques de l'École Normale Supérieure 42.4 (2009): 559-600. <http://eudml.org/doc/272190>.
@article{Bruin2009,
abstract = {Let $f:I \rightarrow I$ be a $C^2$ multimodal interval map satisfying polynomial growth of the derivatives along critical orbits. We prove the existence and uniqueness of equilibrium states for the potential $\phi _t:x\mapsto -t\log |Df(x)|$ for $t$ close to $1$, and also that the pressure function $t \mapsto P(\phi _t)$ is analytic on an appropriate interval near $t = 1$.},
author = {Bruin, Henk, Todd, Mike},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {equilibrium states; thermodynamic formalism; interval maps; non-uniform hyperbolicity},
language = {eng},
number = {4},
pages = {559-600},
publisher = {Société mathématique de France},
title = {Equilibrium states for interval maps: the potential $-t\log |Df|$},
url = {http://eudml.org/doc/272190},
volume = {42},
year = {2009},
}
TY - JOUR
AU - Bruin, Henk
AU - Todd, Mike
TI - Equilibrium states for interval maps: the potential $-t\log |Df|$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 4
SP - 559
EP - 600
AB - Let $f:I \rightarrow I$ be a $C^2$ multimodal interval map satisfying polynomial growth of the derivatives along critical orbits. We prove the existence and uniqueness of equilibrium states for the potential $\phi _t:x\mapsto -t\log |Df(x)|$ for $t$ close to $1$, and also that the pressure function $t \mapsto P(\phi _t)$ is analytic on an appropriate interval near $t = 1$.
LA - eng
KW - equilibrium states; thermodynamic formalism; interval maps; non-uniform hyperbolicity
UR - http://eudml.org/doc/272190
ER -
References
top- [1] L. M. Abramov, The entropy of a derived automorphism, Dokl. Akad. Nauk SSSR128 (1959), 647–650. Zbl0094.10001MR113984
- [2] V. Baladi, Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics 16, World Scientific Publishing Co. Inc., 2000. Zbl1012.37015MR1793194
- [3] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math. 470, Springer, Berlin, 1975. Zbl0308.28010MR442989
- [4] H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Comm. Math. Phys. 168 (1995), 571–580. Zbl0827.58015MR1328254
- [5] H. Bruin, Topological conditions for the existence of absorbing Cantor sets, Trans. Amer. Math. Soc.350 (1998), 2229–2263. Zbl0901.58029MR1458316
- [6] H. Bruin, Minimal Cantor systems and unimodal maps, J. Difference Equ. Appl.9 (2003), 305–318. Zbl1026.37003MR1990338
- [7] H. Bruin & G. Keller, Equilibrium states for -unimodal maps, Ergodic Theory Dynam. Systems18 (1998), 765–789. Zbl0916.58020MR1645373
- [8] H. Bruin, S. Luzzatto & S. Van Strien, Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup.36 (2003), 621–646. Zbl1039.37021MR2013929
- [9] H. Bruin, J. Rivera-Letelier, W. Shen & S. Van Strien, Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math.172 (2008), 509–533. Zbl1138.37019MR2393079
- [10] H. Bruin & M. Todd, Equilibrium states for interval maps: potentials with , Comm. Math. Phys.283 (2008), 579–611. Zbl1157.82022MR2434739
- [11] H. Bruin & S. Vaienti, Return time statistics for unimodal maps, Fund. Math.176 (2003), 77–94. Zbl1082.37037
- [12] H. Bruin & S. Van Strien, Expansion of derivatives in one-dimensional dynamics, Israel J. Math.137 (2003), 223–263. Zbl1122.37310
- [13] P. Collet, Statistics of closest return for some non-uniformly hyperbolic systems, Ergodic Theory Dynam. Systems21 (2001), 401–420. Zbl1002.37019
- [14] D. Fiebig, U.-R. Fiebig & M. Yuri, Pressure and equilibrium states for countable state Markov shifts, Israel J. Math.131 (2002), 221–257. Zbl1026.37020
- [15] F. Hofbauer, The topological entropy of the transformation , Monatsh. Math.90 (1980), 117–141. Zbl0433.54009
- [16] F. Hofbauer & G. Keller, Equilibrium states for piecewise monotonic transformations, Ergodic Theory Dynam. Systems2 (1982), 23–43. Zbl0499.28012
- [17] F. Hofbauer & G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z.180 (1982), 119–140. Zbl0485.28016
- [18] F. Hofbauer & G. Keller, Quadratic maps without asymptotic measure, Comm. Math. Phys.127 (1990), 319–337. Zbl0702.58034
- [19] F. Hofbauer & P. Raith, Topologically transitive subsets of piecewise monotonic maps, which contain no periodic points, Monatsh. Math.107 (1989), 217–239. Zbl0676.54049
- [20] G. Keller, Lifting measures to Markov extensions, Monatsh. Math.108 (1989), 183–200. Zbl0712.28008
- [21] G. Keller, Equilibrium states in ergodic theory, London Math. Soc. Stud. Texts 42, Cambridge Univ. Press, 1998. Zbl0896.28006MR1618769
- [22] G. Keller & T. Nowicki, Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps, Comm. Math. Phys.149 (1992), 31–69. Zbl0763.58024MR1182410
- [23] O. S. Kozlovski, Getting rid of the negative Schwarzian derivative condition, Ann. of Math.152 (2000), 743–762. Zbl0988.37044MR1815700
- [24] F. Ledrappier, Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynam. Systems1 (1981), 77–93. Zbl0487.28015MR627788
- [25] N. Makarov & S. Smirnov, Phase transition in subhyperbolic Julia sets, Ergodic Theory Dynam. Systems16 (1996), 125–157. Zbl0852.58067MR1375130
- [26] N. Makarov & S. Smirnov, On “thermodynamics” of rational maps. I. Negative spectrum, Comm. Math. Phys. 211 (2000), 705–743. Zbl0983.37033MR1773815
- [27] N. Makarov & S. Smirnov, On thermodynamics of rational maps. II. Non-recurrent maps, J. London Math. Soc. 67 (2003), 417–432. Zbl1050.37014MR1956144
- [28] R. D. Mauldin & M. Urbański, Gibbs states on the symbolic space over an infinite alphabet, Israel J. Math.125 (2001), 93–130. Zbl1016.37005MR1853808
- [29] I. Melbourne & M. Nicol, Almost sure invariance principle for nonuniformly hyperbolic systems, Comm. Math. Phys.260 (2005), 131–146. Zbl1084.37024MR2175992
- [30] W. de Melo & S. Van Strien, One-dimensional dynamics, Ergebnisse Math. Grenzg. (3) 25, Springer, 1993. Zbl0791.58003MR1239171
- [31] M. Misiurewicz & W. Szlenk, Entropy of piecewise monotone mappings, Studia Math.67 (1980), 45–63. Zbl0445.54007MR579440
- [32] T. Nowicki & D. Sands, Non-uniform hyperbolicity and universal bounds for -unimodal maps, Invent. Math.132 (1998), 633–680. Zbl0908.58016MR1625708
- [33] Y. Pesin & S. Senti, Equilibrium measures for some one dimensional maps, preprint http://www.math.psu.edu/pesin/publications.html. Zbl1159.37007
- [34] Y. Pesin & S. Senti, Thermodynamical formalism associated with inducing schemes for one-dimensional maps, Mosc. Math. J. 5 (2005), 669–678, 743–744. Zbl1109.37028MR2241816
- [35] Y. Pesin & S. Senti, Equilibrium measures for maps with inducing schemes, J. Mod. Dyn.2 (2008), 397–430. Zbl1159.37007MR2417478
- [36] F. Przytycki, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc.119 (1993), 309–317. Zbl0787.58037MR1186141
- [37] P. Raith, Hausdorff-dimension für stückweise monotone Abbildungen, Thèse, Universität Wien, 1987.
- [38] D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat.9 (1978), 83–87. Zbl0432.58013MR516310
- [39] D. Ruelle, Thermodynamic formalism, Encyclopedia of Mathematics and its Applications 5, Addison-Wesley Publishing Co., Reading, Mass., 1978. Zbl0401.28016MR511655
- [40] O. M. Sarig, Thermodynamic formalism for Markov shifts, Thèse, 2000, Tel-Aviv University.
- [41] O. M. Sarig, Phase transitions for countable Markov shifts, Comm. Math. Phys.217 (2001), 555–577. Zbl1007.37018MR1822107
- [42] O. M. Sarig, Existence of Gibbs measures for countable Markov shifts, Proc. Amer. Math. Soc.131 (2003), 1751–1758. Zbl1009.37003MR1955261
- [43] J. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk27 (1972), 21–64. Zbl0246.28008MR399421
- [44] M. St. Pierre, Zur Hausdorff-Dimension spezieller invarianter Maße für Collet-Eckmann Abbildungen, Diplomarbeit, Erlangen, 1994.
- [45] M. Todd, Distortion bounds for unimodal maps, Fund. Math.193 (2007), 37–77. Zbl1114.37020MR2284572
- [46] S. Van Strien & E. Vargas, Real bounds, ergodicity and negative Schwarzian for multimodal maps, J. Amer. Math. Soc.17 (2004), 749–782. Zbl1073.37043MR2083467
- [47] L.-S. Young, Recurrence times and rates of mixing, Israel J. Math.110 (1999), 153–188. Zbl0983.37005MR1750438
- [48] R. Zweimüller, Invariant measures for general(ized) induced transformations, Proc. Amer. Math. Soc.133 (2005), 2283–2295. Zbl1119.28011MR2138871
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.