Braids and Signatures
Jean-Marc Gambaudo; Étienne Ghys
Bulletin de la Société Mathématique de France (2005)
- Volume: 133, Issue: 4, page 541-579
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topGambaudo, Jean-Marc, and Ghys, Étienne. "Braids and Signatures." Bulletin de la Société Mathématique de France 133.4 (2005): 541-579. <http://eudml.org/doc/272312>.
@article{Gambaudo2005,
abstract = {A braid defines a link which has a signature. This defines a map from the braid group to the integers which is not a homomorphism. We relate the homomorphism defect of this map to Meyer cocycle and Maslov class. We give some information about the global geometry of the gordian metric space.},
author = {Gambaudo, Jean-Marc, Ghys, Étienne},
journal = {Bulletin de la Société Mathématique de France},
keywords = {knots; links; signature; Meyer cocycle; Maslov class},
language = {eng},
number = {4},
pages = {541-579},
publisher = {Société mathématique de France},
title = {Braids and Signatures},
url = {http://eudml.org/doc/272312},
volume = {133},
year = {2005},
}
TY - JOUR
AU - Gambaudo, Jean-Marc
AU - Ghys, Étienne
TI - Braids and Signatures
JO - Bulletin de la Société Mathématique de France
PY - 2005
PB - Société mathématique de France
VL - 133
IS - 4
SP - 541
EP - 579
AB - A braid defines a link which has a signature. This defines a map from the braid group to the integers which is not a homomorphism. We relate the homomorphism defect of this map to Meyer cocycle and Maslov class. We give some information about the global geometry of the gordian metric space.
LA - eng
KW - knots; links; signature; Meyer cocycle; Maslov class
UR - http://eudml.org/doc/272312
ER -
References
top- [1] M. Atiyah – « The logarithm of the Dedekind -function », 278 (1987), p. 335–380. Zbl0648.58035MR909232
- [2] M. Atiyah & I. Singer – « The index of elliptic operators. III », 87 (1968), p. 546–604. Zbl0164.24301MR236952
- [3] J. Barge & É. Ghys – « Cocycles d’Euler et de Maslov », 294 (1992), p. 235–265. Zbl0894.55006MR1183404
- [4] J. Birman – Braids, links, and mapping class groups, Annals of Math. Studies, vol. 82, Princeton University Press, Princeton, NJ, 1974. Zbl0305.57013MR375281
- [5] J.-M. Gambaudo & É. Ghys – « Commutators and diffeomorphisms of surfaces », Ergod. Th. & Dynam. Syst. 24 (2004), no. 5, p. 1591–1617, special volume in memory of M. Herman. Zbl1088.37018MR2104597
- [6] D. Goldschmidt & V. Jones – « Metaplectic link invariants », Geom. Dedicata31 (1989), p. 165–191. Zbl0678.57007MR1012438
- [7] L. Kauffman – On knots, Annals of Math. Studies, vol. 115, Princeton University Press, Princeton, NJ, 1987. Zbl0627.57002MR907872
- [8] B. Kolev – « Entropie topologique et représentation de Burau », 309 (1989), p. 835–838. Zbl0688.58021MR1055205
- [9] W. Meyer – « Die Signatur von Flächenbündeln », 201 (1973), p. 239–264. Zbl0241.55019MR331382
- [10] K. Murasugi – On closed 3-braids, vol. 151, American Mathematical Society, 1974. Zbl0327.55001MR356023
- [11] —, Knot theory and its applications, Birkhäuser, Boston, 1996, translated from the 1993 Japanese original by Bohdan Kurpita. MR1391727
- [12] D. Rolfsen – Knots and links, Math. Lecture Series, vol. 7, Publish or Perish, 1976. Zbl0339.55004MR515288
- [13] C. Squier – « The Burau representation is unitary », 90 (1984), p. 199–202. Zbl0542.20022MR727232
- [14] D. Sullivan – « On the intersection ring of compact three manifolds », 14 (1975), p. 275–277. Zbl0312.57003MR383415
- [15] K. Taniyama & A. Yasuhara – « On -distance of knots », 11 (1994), p. 117–127. Zbl0846.57007MR1309997
- [16] V. Turaev – « A cocycle of the symplectic first Chern class and Maslov indices », Funk. Anal. i Prilozhen. 18 (1984), p. 43–48, Russian; English translation: Funct. Anal. Appl., t.18 (1984), pp.35–39. Zbl0556.55012MR739088
- [17] C. Wall – « Non-additivity of the signature », 7 (1969), p. 269–274. Zbl0176.21501MR246311
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.