Braids and Signatures

Jean-Marc Gambaudo; Étienne Ghys

Bulletin de la Société Mathématique de France (2005)

  • Volume: 133, Issue: 4, page 541-579
  • ISSN: 0037-9484

Abstract

top
A braid defines a link which has a signature. This defines a map from the braid group to the integers which is not a homomorphism. We relate the homomorphism defect of this map to Meyer cocycle and Maslov class. We give some information about the global geometry of the gordian metric space.

How to cite

top

Gambaudo, Jean-Marc, and Ghys, Étienne. "Braids and Signatures." Bulletin de la Société Mathématique de France 133.4 (2005): 541-579. <http://eudml.org/doc/272312>.

@article{Gambaudo2005,
abstract = {A braid defines a link which has a signature. This defines a map from the braid group to the integers which is not a homomorphism. We relate the homomorphism defect of this map to Meyer cocycle and Maslov class. We give some information about the global geometry of the gordian metric space.},
author = {Gambaudo, Jean-Marc, Ghys, Étienne},
journal = {Bulletin de la Société Mathématique de France},
keywords = {knots; links; signature; Meyer cocycle; Maslov class},
language = {eng},
number = {4},
pages = {541-579},
publisher = {Société mathématique de France},
title = {Braids and Signatures},
url = {http://eudml.org/doc/272312},
volume = {133},
year = {2005},
}

TY - JOUR
AU - Gambaudo, Jean-Marc
AU - Ghys, Étienne
TI - Braids and Signatures
JO - Bulletin de la Société Mathématique de France
PY - 2005
PB - Société mathématique de France
VL - 133
IS - 4
SP - 541
EP - 579
AB - A braid defines a link which has a signature. This defines a map from the braid group to the integers which is not a homomorphism. We relate the homomorphism defect of this map to Meyer cocycle and Maslov class. We give some information about the global geometry of the gordian metric space.
LA - eng
KW - knots; links; signature; Meyer cocycle; Maslov class
UR - http://eudml.org/doc/272312
ER -

References

top
  1. [1] M. Atiyah – « The logarithm of the Dedekind η -function », 278 (1987), p. 335–380. Zbl0648.58035MR909232
  2. [2] M. Atiyah & I. Singer – « The index of elliptic operators. III », 87 (1968), p. 546–604. Zbl0164.24301MR236952
  3. [3] J. Barge & É. Ghys – « Cocycles d’Euler et de Maslov », 294 (1992), p. 235–265. Zbl0894.55006MR1183404
  4. [4] J. Birman – Braids, links, and mapping class groups, Annals of Math. Studies, vol. 82, Princeton University Press, Princeton, NJ, 1974. Zbl0305.57013MR375281
  5. [5] J.-M. Gambaudo & É. Ghys – « Commutators and diffeomorphisms of surfaces », Ergod. Th. & Dynam. Syst. 24 (2004), no. 5, p. 1591–1617, special volume in memory of M. Herman. Zbl1088.37018MR2104597
  6. [6] D. Goldschmidt & V. Jones – « Metaplectic link invariants », Geom. Dedicata31 (1989), p. 165–191. Zbl0678.57007MR1012438
  7. [7] L. Kauffman – On knots, Annals of Math. Studies, vol. 115, Princeton University Press, Princeton, NJ, 1987. Zbl0627.57002MR907872
  8. [8] B. Kolev – « Entropie topologique et représentation de Burau », 309 (1989), p. 835–838. Zbl0688.58021MR1055205
  9. [9] W. Meyer – « Die Signatur von Flächenbündeln », 201 (1973), p. 239–264. Zbl0241.55019MR331382
  10. [10] K. Murasugi – On closed 3-braids, vol. 151, American Mathematical Society, 1974. Zbl0327.55001MR356023
  11. [11] —, Knot theory and its applications, Birkhäuser, Boston, 1996, translated from the 1993 Japanese original by Bohdan Kurpita. MR1391727
  12. [12] D. Rolfsen – Knots and links, Math. Lecture Series, vol. 7, Publish or Perish, 1976. Zbl0339.55004MR515288
  13. [13] C. Squier – « The Burau representation is unitary », 90 (1984), p. 199–202. Zbl0542.20022MR727232
  14. [14] D. Sullivan – « On the intersection ring of compact three manifolds », 14 (1975), p. 275–277. Zbl0312.57003MR383415
  15. [15] K. Taniyama & A. Yasuhara – « On C -distance of knots », 11 (1994), p. 117–127. Zbl0846.57007MR1309997
  16. [16] V. Turaev – « A cocycle of the symplectic first Chern class and Maslov indices », Funk. Anal. i Prilozhen. 18 (1984), p. 43–48, Russian; English translation: Funct. Anal. Appl., t.18 (1984), pp.35–39. Zbl0556.55012MR739088
  17. [17] C. Wall – « Non-additivity of the signature », 7 (1969), p. 269–274. Zbl0176.21501MR246311

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.