Integral representation and relaxation for Junctionals defined on measures

Ennio De Giorgi; Luigi Ambrosio; Giuseppe Buttazzo

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1987)

  • Volume: 81, Issue: 1, page 7-13
  • ISSN: 1120-6330

Abstract

top
Given a separable metric locally compact space Ω , and a positive finite non-atomic measure λ on Ω , we study the integral representation on the space of measures with bounded variation Ω of the lower semicontinuous envelope of the functional F ( u ) = Ω f ( x , y ) d λ    u L 1 ( Ω , λ , n ) with respect to the weak convergence of measures.

How to cite

top

De Giorgi, Ennio, Ambrosio, Luigi, and Buttazzo, Giuseppe. "Integral representation and relaxation for Junctionals defined on measures." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 81.1 (1987): 7-13. <http://eudml.org/doc/287349>.

@article{DeGiorgi1987,
abstract = {Given a separable metric locally compact space $\Omega$, and a positive finite non-atomic measure $\lambda$ on $\Omega$, we study the integral representation on the space of measures with bounded variation $\Omega$ of the lower semicontinuous envelope of the functional $$F(u) = \int\_\{\Omega\} f(x,y) d\lambda \qquad u \in L^\{1\}(\Omega,\lambda,\mathbb\{R\}^\{n\})$$ with respect to the weak convergence of measures.},
author = {De Giorgi, Ennio, Ambrosio, Luigi, Buttazzo, Giuseppe},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Relaxation; Integral representation; Measures; relaxation; ingegral representation; measures with bounded variation; lower semicontinuous envelope},
language = {eng},
month = {3},
number = {1},
pages = {7-13},
publisher = {Accademia Nazionale dei Lincei},
title = {Integral representation and relaxation for Junctionals defined on measures},
url = {http://eudml.org/doc/287349},
volume = {81},
year = {1987},
}

TY - JOUR
AU - De Giorgi, Ennio
AU - Ambrosio, Luigi
AU - Buttazzo, Giuseppe
TI - Integral representation and relaxation for Junctionals defined on measures
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1987/3//
PB - Accademia Nazionale dei Lincei
VL - 81
IS - 1
SP - 7
EP - 13
AB - Given a separable metric locally compact space $\Omega$, and a positive finite non-atomic measure $\lambda$ on $\Omega$, we study the integral representation on the space of measures with bounded variation $\Omega$ of the lower semicontinuous envelope of the functional $$F(u) = \int_{\Omega} f(x,y) d\lambda \qquad u \in L^{1}(\Omega,\lambda,\mathbb{R}^{n})$$ with respect to the weak convergence of measures.
LA - eng
KW - Relaxation; Integral representation; Measures; relaxation; ingegral representation; measures with bounded variation; lower semicontinuous envelope
UR - http://eudml.org/doc/287349
ER -

References

top
  1. ACERBI, E. and FUSCO, N. (1984) - Semicontinuity problems in the calculus of variations. «Arch. Rational Mech. Anal.», 86, 125-145. Zbl0565.49010MR751305DOI10.1007/BF00275731
  2. BOUCHITTE, G.: Paper in preparation. 
  3. BUTTAZZO, G. and DAL MASO, G. (1983) - On Nemyckii operators and integral representation of local functionals. «Rend. Mat.», 3, 491-509. Zbl0536.47027MR743394
  4. BUTTAZZO, G. and DAL MASO, G. (1985) - Integral representation and relaxation of local functionals. «Non linear Anal.», 9, 515-532. Zbl0527.49008MR794824DOI10.1016/0362-546X(85)90038-0
  5. FOUGERES, A. and TRUFFERT, A. (1984) - Δ -integrands and essential infimum, Nemyckii representation of l.s.c. operators on decomposable spaces and Radon-Nikodym-Hiai representation of measure functionals. Preprint A.V.A.M.A.C. University of Perpignan, Perpignan. 
  6. GAVIOLI, A. (1986) - Condizioni necessarie e sufficienti per la semicontinuità inferiore di certi funzionali integrali. Preprint University of Modena, Modena. 
  7. HIAI, F. (1979) - Representation of additive functionals on vector valued normed Kothe spaces. «Kodai Math. J.», 2, 300-313. Zbl0431.46025MR553237
  8. MARCELLINI, P. (1979) - Some problems of semicontinuity. «Proceedings Recent Methods in Non linear Analysis, Rome 1978», Edited by E. De Giorgi and E. Magenes and U. Mosco, Pitagora, Bologna, 205-222. Zbl0405.49021MR533168
  9. MARCELLINI, P. and SBORDONE, C. (1980) - Semicontinuity problems in the calculus of variations. «Non linear Anal.» , 4, 241-257. Zbl0537.49002MR563807DOI10.1016/0362-546X(80)90052-8
  10. OLECH, C. (1975) - Existence theory in optimal control problems: the underlying ideas. «Proceedings International Conference on Differential Equations, University of Southern California 1974», Edited by H.A. Antosiewicz, Academic Press, New York612-629. Zbl0353.49013MR420377
  11. ROCKAFELLAR, R.T. (1971) - Integrals which are convex functionals, II. «Pacific J. Math.», 39, 439-469. Zbl0236.46031MR310612
  12. ROCKAFELLAR, R.T. (1972) - Convex Analyss. Princeton University Press, Princeton. Zbl0193.18401
  13. RUDIN, W. (1974) - Real and Complex Analysis. Mc-Graw Hill, New York. Zbl0142.01701MR344043
  14. VALADIER, M. (1979) - Closedness in the weak topology of the dual pair L 1 , C . «J. Math. Anal. Appl.», 69, 17-34. Zbl0412.46040MR535279DOI10.1016/0022-247X(79)90176-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.