Integral representation and relaxation for Junctionals defined on measures
Ennio De Giorgi; Luigi Ambrosio; Giuseppe Buttazzo
- Volume: 81, Issue: 1, page 7-13
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topDe Giorgi, Ennio, Ambrosio, Luigi, and Buttazzo, Giuseppe. "Integral representation and relaxation for Junctionals defined on measures." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 81.1 (1987): 7-13. <http://eudml.org/doc/287349>.
@article{DeGiorgi1987,
abstract = {Given a separable metric locally compact space $\Omega$, and a positive finite non-atomic measure $\lambda$ on $\Omega$, we study the integral representation on the space of measures with bounded variation $\Omega$ of the lower semicontinuous envelope of the functional $$F(u) = \int\_\{\Omega\} f(x,y) d\lambda \qquad u \in L^\{1\}(\Omega,\lambda,\mathbb\{R\}^\{n\})$$ with respect to the weak convergence of measures.},
author = {De Giorgi, Ennio, Ambrosio, Luigi, Buttazzo, Giuseppe},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Relaxation; Integral representation; Measures; relaxation; ingegral representation; measures with bounded variation; lower semicontinuous envelope},
language = {eng},
month = {3},
number = {1},
pages = {7-13},
publisher = {Accademia Nazionale dei Lincei},
title = {Integral representation and relaxation for Junctionals defined on measures},
url = {http://eudml.org/doc/287349},
volume = {81},
year = {1987},
}
TY - JOUR
AU - De Giorgi, Ennio
AU - Ambrosio, Luigi
AU - Buttazzo, Giuseppe
TI - Integral representation and relaxation for Junctionals defined on measures
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1987/3//
PB - Accademia Nazionale dei Lincei
VL - 81
IS - 1
SP - 7
EP - 13
AB - Given a separable metric locally compact space $\Omega$, and a positive finite non-atomic measure $\lambda$ on $\Omega$, we study the integral representation on the space of measures with bounded variation $\Omega$ of the lower semicontinuous envelope of the functional $$F(u) = \int_{\Omega} f(x,y) d\lambda \qquad u \in L^{1}(\Omega,\lambda,\mathbb{R}^{n})$$ with respect to the weak convergence of measures.
LA - eng
KW - Relaxation; Integral representation; Measures; relaxation; ingegral representation; measures with bounded variation; lower semicontinuous envelope
UR - http://eudml.org/doc/287349
ER -
References
top- ACERBI, E. and FUSCO, N. (1984) - Semicontinuity problems in the calculus of variations. «Arch. Rational Mech. Anal.», 86, 125-145. Zbl0565.49010MR751305DOI10.1007/BF00275731
- BOUCHITTE, G.: Paper in preparation.
- BUTTAZZO, G. and DAL MASO, G. (1983) - On Nemyckii operators and integral representation of local functionals. «Rend. Mat.», 3, 491-509. Zbl0536.47027MR743394
- BUTTAZZO, G. and DAL MASO, G. (1985) - Integral representation and relaxation of local functionals. «Non linear Anal.», 9, 515-532. Zbl0527.49008MR794824DOI10.1016/0362-546X(85)90038-0
- FOUGERES, A. and TRUFFERT, A. (1984) - -integrands and essential infimum, Nemyckii representation of l.s.c. operators on decomposable spaces and Radon-Nikodym-Hiai representation of measure functionals. Preprint A.V.A.M.A.C. University of Perpignan, Perpignan.
- GAVIOLI, A. (1986) - Condizioni necessarie e sufficienti per la semicontinuità inferiore di certi funzionali integrali. Preprint University of Modena, Modena.
- HIAI, F. (1979) - Representation of additive functionals on vector valued normed Kothe spaces. «Kodai Math. J.», 2, 300-313. Zbl0431.46025MR553237
- MARCELLINI, P. (1979) - Some problems of semicontinuity. «Proceedings Recent Methods in Non linear Analysis, Rome 1978», Edited by E. De Giorgi and E. Magenes and U. Mosco, Pitagora, Bologna, 205-222. Zbl0405.49021MR533168
- MARCELLINI, P. and SBORDONE, C. (1980) - Semicontinuity problems in the calculus of variations. «Non linear Anal.» , 4, 241-257. Zbl0537.49002MR563807DOI10.1016/0362-546X(80)90052-8
- OLECH, C. (1975) - Existence theory in optimal control problems: the underlying ideas. «Proceedings International Conference on Differential Equations, University of Southern California 1974», Edited by H.A. Antosiewicz, Academic Press, New York612-629. Zbl0353.49013MR420377
- ROCKAFELLAR, R.T. (1971) - Integrals which are convex functionals, II. «Pacific J. Math.», 39, 439-469. Zbl0236.46031MR310612
- ROCKAFELLAR, R.T. (1972) - Convex Analyss. Princeton University Press, Princeton. Zbl0193.18401
- RUDIN, W. (1974) - Real and Complex Analysis. Mc-Graw Hill, New York. Zbl0142.01701MR344043
- VALADIER, M. (1979) - Closedness in the weak topology of the dual pair , . «J. Math. Anal. Appl.», 69, 17-34. Zbl0412.46040MR535279DOI10.1016/0022-247X(79)90176-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.