Polynomial hulls and positive currents

Tien-Cuong Dinh; Mark G. Lawrence

Annales de la Faculté des sciences de Toulouse : Mathématiques (2003)

  • Volume: 12, Issue: 3, page 317-334
  • ISSN: 0240-2963

How to cite

top

Dinh, Tien-Cuong, and Lawrence, Mark G.. "Polynomial hulls and positive currents." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.3 (2003): 317-334. <http://eudml.org/doc/73606>.

@article{Dinh2003,
author = {Dinh, Tien-Cuong, Lawrence, Mark G.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {polynomial hulls; positive currents; pluriharmonic currents},
language = {eng},
number = {3},
pages = {317-334},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Polynomial hulls and positive currents},
url = {http://eudml.org/doc/73606},
volume = {12},
year = {2003},
}

TY - JOUR
AU - Dinh, Tien-Cuong
AU - Lawrence, Mark G.
TI - Polynomial hulls and positive currents
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2003
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 12
IS - 3
SP - 317
EP - 334
LA - eng
KW - polynomial hulls; positive currents; pluriharmonic currents
UR - http://eudml.org/doc/73606
ER -

References

top
  1. [1] Alessandrini ( L.) AND Bassanelli ( G.). - Positive ∂∂-closed currents and non-Kähler geometry, J. Geometric Analysis2, p. 291-316 (1992). Zbl0735.32008MR1170477
  2. [2] Alessandrini ( L.) AND Bassanelli ( G.). - Plurisubharmonic currents and their extension across analytic subsets, Forum Math.5, p. 577-602 (1993). Zbl0784.32014MR1242890
  3. [3] Alessandrini ( L.) AND Bassanelli ( G.). - Lelong numbers of positive plurisubharmonic currents, Results in Mathematics30, p. 191-224 (1996). Zbl0870.32002MR1419939
  4. [4] Alexander ( H.). - Polynomial approximation and hulls in sets of finite linear measure in Cn, Amer. J. Math.93, p. 65-74 (1971). Zbl0221.32011MR284617
  5. [5] Alexander ( H.). - The polynomial hull of a set of finite linear measure in Cn, J. Analyse Math.47, p. 238-242 (1986). Zbl0615.32009MR874052
  6. [6] Alexander ( H.). - Holomorphic chains and the support hypothesis conjecture, J. Am. Math. Soc.10, No.1, p. 123-138 (1997). Zbl0870.32003MR1388871
  7. [7] Alexander ( H. ) AND Wermer ( J.). - Linking numbers and boundaries of varieties, Ann. Math. (2) 151, No.1, p. 125-150 (2000). Zbl1013.32007MR1745016
  8. [8] Bassanelli ( G.). - A cut-off theorem for plurisubharmonic currents, Forum Math. 6, p. 567-595 (1994). Zbl0808.32010MR1295153
  9. [9] Berndtsson ( B.) AND Sibony ( N.). — The ∂ equation on a positive current, Inv. math.147, p. 371-428 (2002). Zbl1031.32005MR1881924
  10. [10] Bishop ( E. ). - Analyticity in certain Banach algebras , Trans. Amer. Math. Soc., 102, p. 507-544 (1962). Zbl0112.07301MR142015
  11. [11] Dinh ( T.C. ). - Enveloppe polynomiale d'un compact de longueur finie et chaînes holomorphes à bord rectifiable, Acta Math.180, No.1, p. 31-67 (1998). Zbl0942.32008MR1618329
  12. [12] Dinh ( T.C. ). - Orthogonal measures on the boundary of a Riemann surface and polynomial hull of compacts of finite length, J. Funct. Anal.157, No.2, p. 624-649 (1998). Zbl0951.32005MR1638265
  13. [13] Demailly ( J.P.). - Formules de Jensen en plusieurs variables et application arithmétique, Bull. Soc. Math. France110, p. 75-102 (1982). Zbl0493.32003MR662130
  14. [14] Dolbeault ( P.) AND Henkin ( G.). — Chaînes holomorphes de bord donné dans CPn, Bull. Soc. Math. de France125, p. 383-445 (1997). Zbl0942.32007MR1605457
  15. [15] Duval ( J. ) AND Sibony ( N.). - Polynomial convexity, rational convexity, and currents, Duke Math. J.79, No.2, p. 487-513 (1995). Zbl0838.32006MR1344768
  16. [16] Federer ( H. ). - Geometric Measures theory, NewYork , Springer Verlag, (1969 ). Zbl0176.00801
  17. [17] Fornæss ( J.) AND Sibony ( N.). - Oka's inequality for currents and applications, Math. Ann.301, p. 399-419 (1995). Zbl0832.32010MR1324517
  18. [18] Forstneric ( F.). - The length of a set in the sphere whose polynomial hull contains the origin, Indag. Mathem., N.S.3 (2), p. 169-172 (1992). Zbl0762.32007MR1168343
  19. [19] Garnett ( L.). - Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal.51, no. 3, p. 285-311 (1983). Zbl0524.58026MR703080
  20. [20] Ghys ( E.). — Laminations par surfaces de Riemann, Panorama & Synthèses8, p. 49-95 (1999). Zbl1018.37028
  21. [21] Harvey ( R. ) AND Lawson ( B.). - On boundaries of complex analytic varieties I, Ann. of Math., II. Ser., 102, p. 223-290 (1975). Zbl0317.32017MR425173
  22. [22] Harvey ( R. ) AND Shiffman ( B.). - A characterization of holomorphic chains, Ann. Math.99, p. 553-587 (1974). Zbl0287.32008MR355095
  23. [23] Kallin ( E. ). - Fat polynomially convex sets, function Algebras, Proceeding of an International Symposium on Function algebras , Tulane1965 , Scott, Foresman and Company, p. 149-152 (1966). Zbl0142.10104MR194618
  24. [24] King ( J.). - The currents defined by analytic varieties, Acta Math.127, p. 185-220 (1971). Zbl0224.32008MR393550
  25. [25] Lawrence ( M.G.). - Polynomial hulls of rectifiable curves , Amer. J. Math.117, p. 405-417 (1995). Zbl0827.32012MR1323682
  26. [26] Lawrence ( M.G. ). - Polynomial hull of sets of finite length in strictly convex domain, Manuscript (1997). 
  27. [27] Marinescu ( G. ) AND Dinh ( T.C.). - Compactification of hyperconcave ends and theorems of Siu-Yau and Nadel, Preprint, (2002). 
  28. [28] Mattila ( P. ). - Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, ( 1975). MR1333890
  29. [29] Sarkis ( F. ). - CR-meromorphic extension and the nonembeddability of the Andreotti-Rossi CR structure in the projective space, Internat. J. Math.10, no. 7, p. 897-915 (1999). Zbl1110.32308MR1728127
  30. [30] Shiffman ( B.). - Complete characterization of holomorphic chains of codimension one, Math. Ann274, p. 233-256 (1986). Zbl0572.32005MR838467
  31. [31] Sibony ( N. ). - Quelques problèmes de prolongement de courants en analyse complexe, Duke Math. J.52, p. 157-197 (1985). Zbl0578.32023MR791297
  32. [32] Siu ( Y.T. ). - Analyticity of Sets Associated to Lelong Numbers and the Extension of Closed Positive Currents, Inventiones math.27, p. 53-156 (1974). Zbl0289.32003MR352516
  33. [33] Skoda ( H. ). - Sous-ensemble analytique d'ordre fini ou infini dans Cn, Bull. Soc. math. France100, p. 353-408 (1972). Zbl0246.32009MR352517
  34. [34] Skoda ( H. ). - Prolongement des courants positifs, fermés de masse finie , Inv. Math. 27, p. 53-156 (1974). 
  35. [35] Stolzenberg ( G.). - Uniform approximation on smooth curves , Acta Math.115, 185-198 (1966). Zbl0143.30005MR192080
  36. [36] Takorodo ( M.). — Sur les ensembles pseudoconcaves généraux, J. Math. Soc. Japan17, no. 3, p. 281-290 (1965). Zbl0147.07403MR183901
  37. [37] Wermer ( J. ). - The hull of a curve in Cn, Ann. of Math.68, p. 550-561 (1958). Zbl0084.33402MR100102
  38. [38] Ziemer ( W.P. ). - Weakly Differentiable Functions, Springer-Verlag, (1989). Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.