Regularity of solutions of the Hamilton-Jacobi equation
Annales de la Faculté des sciences de Toulouse : Mathématiques (2003)
- Volume: 12, Issue: 4, page 479-516
- ISSN: 0240-2963
Access Full Article
topHow to cite
topFathi, Albert. "Regularity of $C^1$ solutions of the Hamilton-Jacobi equation." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.4 (2003): 479-516. <http://eudml.org/doc/73614>.
@article{Fathi2003,
author = {Fathi, Albert},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Hamilton-Jacobi equation; Euler-Lagrange equation; Legendre transformation},
language = {eng},
number = {4},
pages = {479-516},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Regularity of $C^1$ solutions of the Hamilton-Jacobi equation},
url = {http://eudml.org/doc/73614},
volume = {12},
year = {2003},
}
TY - JOUR
AU - Fathi, Albert
TI - Regularity of $C^1$ solutions of the Hamilton-Jacobi equation
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2003
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 12
IS - 4
SP - 479
EP - 516
LA - eng
KW - Hamilton-Jacobi equation; Euler-Lagrange equation; Legendre transformation
UR - http://eudml.org/doc/73614
ER -
References
top- [Be] Benton Jr.( S.H.), The Hamilton-Jacobi Equation: A Global Approach, Academic Press, New York , San Francisco, and London , Mathematics in Science and Enggineering131, (1977). Zbl0418.49001MR442431
- [BP] Bialy ( M. ) & Polterovitch ( L.), Hamiltonian Diffeomorphisms and Lagrangian Distributions, Math. Zeitschrift2, p. 173-210 (1992). Zbl0761.58010
- [CC] Caffarelli ( L.A. ) & Cabré ( X.), Fully Nonlinear Elliptic Equations , Colloquium Publications43, AMS, Providence (1995 ). Zbl0834.35002
- [CI] Clarke ( F.H. ) , Methods of Dynamic and Nonsmooth Optimization , CBMS-NSF Regional Conference Series in Applied Mathematics 57 , SIAM, Philadelphia (1989). Zbl0696.49003MR1085948
- [Es] Eschenburg ( J.H. ), Horospheres and the Stable Part of the Geodesic Flow, Math. Zeitschrift153, p. 237-251 (1977). Zbl0332.53028MR440605
- [Fa] Fathi ( A. ), Théorème KAM faible et Théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris, Série I324, p. 1043-1046 (1997 ). Zbl0885.58022MR1451248
- [FI] Fleming ( W.H.), The Cauchy Problem for a nonlinear First Order Partial Diferrential Equation, J. Diff. Equ.5, p. 515-530 (1969). Zbl0172.13901MR235269
- [He] Herman ( M.R. ), Inégalités à priori pour des tores lagrangiens invariants par des difféomorphismes symplectiques, Publ. Math. IHES70, p. 47-101 (1989). Zbl0717.58020MR1067380
- [Ki] Kiselman ( C.O.), Regularity Classes for Operations in Convexity Theory, Kodai Math. J15, p. 354-374 (1992). Zbl0779.49022MR1189964
- [Kn] Knieper ( G.), Mannigfaltigkeiten Ohne Konjugierte Punkte , Bonner Mathematische Shriften168, (1986). Zbl0601.53039MR851010
- [La] Lang ( S.) , Differential and Riemannian Manifolds, Third Edition, Graduate Texts in Mathematics160, Springer, New York, Berlin, Heidelberg ( 1995). Zbl0824.58003MR1335233
- [Li] Lions ( P.L. ), Generalized Solutions of Hamilton-Jacobi Equations , Research Notes in Mathematics69, Pitman, London ( 1982). Zbl0497.35001MR667669
- [Ma] Mather ( J.N. ), Action Minimizing Meausures for Positive Definite Lagrangian Systems, Math. Z.207, p. 169-207 (1991). Zbl0696.58027MR1109661
- [PR] Poly( J-B. ) & Raby ( G.), Fonction distance et singularités , Bull. Sci. Math.108, p. 187-195 (1984). Zbl0547.58011
- [Ze] Zeghib ( A. ) , Lipschitz Regularity in some Geometric Problems, preprint ENS-Lyon2000 . MR2110754
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.