Regularity of C 1 solutions of the Hamilton-Jacobi equation

Albert Fathi

Annales de la Faculté des sciences de Toulouse : Mathématiques (2003)

  • Volume: 12, Issue: 4, page 479-516
  • ISSN: 0240-2963

How to cite

top

Fathi, Albert. "Regularity of $C^1$ solutions of the Hamilton-Jacobi equation." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.4 (2003): 479-516. <http://eudml.org/doc/73614>.

@article{Fathi2003,
author = {Fathi, Albert},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Hamilton-Jacobi equation; Euler-Lagrange equation; Legendre transformation},
language = {eng},
number = {4},
pages = {479-516},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Regularity of $C^1$ solutions of the Hamilton-Jacobi equation},
url = {http://eudml.org/doc/73614},
volume = {12},
year = {2003},
}

TY - JOUR
AU - Fathi, Albert
TI - Regularity of $C^1$ solutions of the Hamilton-Jacobi equation
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2003
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 12
IS - 4
SP - 479
EP - 516
LA - eng
KW - Hamilton-Jacobi equation; Euler-Lagrange equation; Legendre transformation
UR - http://eudml.org/doc/73614
ER -

References

top
  1. [Be] Benton Jr.( S.H.), The Hamilton-Jacobi Equation: A Global Approach, Academic Press, New York , San Francisco, and London , Mathematics in Science and Enggineering131, (1977). Zbl0418.49001MR442431
  2. [BP] Bialy ( M. ) & Polterovitch ( L.), Hamiltonian Diffeomorphisms and Lagrangian Distributions, Math. Zeitschrift2, p. 173-210 (1992). Zbl0761.58010
  3. [CC] Caffarelli ( L.A. ) & Cabré ( X.), Fully Nonlinear Elliptic Equations , Colloquium Publications43, AMS, Providence (1995 ). Zbl0834.35002
  4. [CI] Clarke ( F.H. ) , Methods of Dynamic and Nonsmooth Optimization , CBMS-NSF Regional Conference Series in Applied Mathematics 57 , SIAM, Philadelphia (1989). Zbl0696.49003MR1085948
  5. [Es] Eschenburg ( J.H. ), Horospheres and the Stable Part of the Geodesic Flow, Math. Zeitschrift153, p. 237-251 (1977). Zbl0332.53028MR440605
  6. [Fa] Fathi ( A. ), Théorème KAM faible et Théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris, Série I324, p. 1043-1046 (1997 ). Zbl0885.58022MR1451248
  7. [FI] Fleming ( W.H.), The Cauchy Problem for a nonlinear First Order Partial Diferrential Equation, J. Diff. Equ.5, p. 515-530 (1969). Zbl0172.13901MR235269
  8. [He] Herman ( M.R. ), Inégalités à priori pour des tores lagrangiens invariants par des difféomorphismes symplectiques, Publ. Math. IHES70, p. 47-101 (1989). Zbl0717.58020MR1067380
  9. [Ki] Kiselman ( C.O.), Regularity Classes for Operations in Convexity Theory, Kodai Math. J15, p. 354-374 (1992). Zbl0779.49022MR1189964
  10. [Kn] Knieper ( G.), Mannigfaltigkeiten Ohne Konjugierte Punkte , Bonner Mathematische Shriften168, (1986). Zbl0601.53039MR851010
  11. [La] Lang ( S.) , Differential and Riemannian Manifolds, Third Edition, Graduate Texts in Mathematics160, Springer, New York, Berlin, Heidelberg ( 1995). Zbl0824.58003MR1335233
  12. [Li] Lions ( P.L. ), Generalized Solutions of Hamilton-Jacobi Equations , Research Notes in Mathematics69, Pitman, London ( 1982). Zbl0497.35001MR667669
  13. [Ma] Mather ( J.N. ), Action Minimizing Meausures for Positive Definite Lagrangian Systems, Math. Z.207, p. 169-207 (1991). Zbl0696.58027MR1109661
  14. [PR] Poly( J-B. ) & Raby ( G.), Fonction distance et singularités , Bull. Sci. Math.108, p. 187-195 (1984). Zbl0547.58011
  15. [Ze] Zeghib ( A. ) , Lipschitz Regularity in some Geometric Problems, preprint ENS-Lyon2000 . MR2110754

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.