Énergie et déformations en géométrie différentielle

J. Eells; Joseph H. Sampson

Annales de l'institut Fourier (1964)

  • Volume: 14, Issue: 1, page 61-69
  • ISSN: 0373-0956

How to cite

top

Eells, J., and Sampson, Joseph H.. "Énergie et déformations en géométrie différentielle." Annales de l'institut Fourier 14.1 (1964): 61-69. <http://eudml.org/doc/73831>.

@article{Eells1964,
author = {Eells, J., Sampson, Joseph H.},
journal = {Annales de l'institut Fourier},
keywords = {Riemannian manifolds},
language = {fre},
number = {1},
pages = {61-69},
publisher = {Association des Annales de l'Institut Fourier},
title = {Énergie et déformations en géométrie différentielle},
url = {http://eudml.org/doc/73831},
volume = {14},
year = {1964},
}

TY - JOUR
AU - Eells, J.
AU - Sampson, Joseph H.
TI - Énergie et déformations en géométrie différentielle
JO - Annales de l'institut Fourier
PY - 1964
PB - Association des Annales de l'Institut Fourier
VL - 14
IS - 1
SP - 61
EP - 69
LA - fre
KW - Riemannian manifolds
UR - http://eudml.org/doc/73831
ER -

References

top
  1. [1] M. BERGER, Les sphères parmi les variétés d'Einstein, C.R. 254 (1962), 1564-1566. Zbl0109.40501MR24 #A3607
  2. [2] E. CALABI, The space of Kahler metrics, Proc. Inter. Congress. Math., 1954. 
  3. [3] J. EELLS, On the geometry of function spaces, Symp. Inter. de Top., Alg. (1958), 303-308. Zbl0092.11302MR20 #4878
  4. [4] D. HILBERT, Die Grundlagen der Physik (Erste Mitteilung), Nachr. Ges. Wiss. Gött., (1915), 395-407. Zbl45.1111.01JFM45.1111.01
  5. [5] J. L. LIONS, Équations différentielles opérationnelles et problèmes aux limites, Springer, 1961. Zbl0098.31101
  6. [6] P. LAX and J. A. MILGRAM. Parabolic equations and semigroup, Annals of Math. Studies, 33. Zbl0058.08703
  7. [7] A. MILGRAM and P. C. ROSENBLOOM, Heat conduction on Riemannian manifolds I, Proc. N.A.S., 37 (1951). Zbl0044.31703
  8. [8] C. B. MORREY, The problem of Plateau on a Riemannian manifold, Annals of Math. 49 (1948), 801-851. Zbl0033.39601MR10,259f
  9. [9] C. B. MORREY, Multiple integral problems in the calculus of variations and related topics, Ann. Scuola Nor. Sup. Pisa, (1960), 1-61. Zbl0094.08104
  10. [10] C. B. MORREY et J. EELLS, A variational method in the theory of harmonic integrals I, Annals of Math ; 63 (1956), 91-128. Zbl0070.09901MR19,407b
  11. [11] R. S. PALAIS, Lectures on Morse theory ; Mimeo. Notes. Brandeis Univ., 1963. 
  12. [12] J. EELLS et J. H. SAMPSON, Harmonic mappings of Riemannian manifolds, Am. Journ. of Math. (à paraître). Zbl0122.40102
  13. [13] A. H. TAUB, Conversation laws and variational principles in general relativity, Notes of a lecture at the Summer Symp. in Diff. Geometry, Santa Barbara, (1962). 
  14. [14] H. YAMABE, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J., 12 (1960), 21-37. Zbl0096.37201MR23 #A2847

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.